A038081 Number of rooted identity trees of height n. Sets of rank n.
1, 1, 2, 12, 65520
Offset: 0
Links
- Eric Weisstein's World of Mathematics, Rank.
- Index entries for sequences related to rooted trees
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
: T(6,4) = 3 : T(11,3) = 1 : : o o o : o : : / \ | | : /( )\ : : o o o o : o o o o : : | / \ | : /| | | : : o o o o : o o o o : : | | / \ : | | : : o o o o : o o : : | | | : : : o o o : : Triangle T(n,k) begins: 1; 0, 1; 0, 0, 1; 0, 0, 1, 1; 0, 0, 0, 2, 1; 0, 0, 0, 2, 3, 1; 0, 0, 0, 2, 5, 4, 1; 0, 0, 0, 2, 8, 9, 5, 1; 0, 0, 0, 1, 12, 18, 14, 6, 1; 0, 0, 0, 1, 17, 34, 33, 20, 7, 1; 0, 0, 0, 1, 23, 61, 72, 54, 27, 8, 1; 0, 0, 0, 0, 32, 108, 149, 132, 82, 35, 9, 1;
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k<1, 0, add(binomial(b((i-1)$2, k-1), j)*b(n-i*j, i-1, k), j=0..n/i))) end: T:= (n, k)-> b((n-1)$2, k) -`if`(k=0, 0, b((n-1)$2, k-1)): seq(seq(T(n, k), k=0..n-1), n=1..15);
Drop[Transpose[Map[PadRight[#,15]&,Table[f[n_]:=Nest[ CoefficientList[ Series[ Product[(1+x^i)^#[[i]],{i,1,Length[#]}],{x,0,15}],x]&,{1},n]; f[m]-PadRight[f[m-1],Length[f[m]]],{m,1,15}]]],1]//Grid (* Geoffrey Critzer, Aug 01 2013 *)
weigh:= proc(p) proc(n) `if`(n<0,1, coeff(mul((1+x^k)^p(k), k=1..n), x,n)) end end: wsh:= p-> n-> weigh(p)(n-1): a:= wsh(n-> `if`(n>0 and n<12, [1$3,2$5,1$3][n],0)): seq(a(n), n=1..97); # Alois P. Heinz, Sep 10 2008
a = Drop[CoefficientList[ Series[x (1 + x) (1 + x^2) (1 + x^3) (1 + x^4), {x, 0, 11}], x], 1]; nn = 97; Drop[ CoefficientList[ Series[x Product[(1 + x^i)^a[[i]], {i, 1, 11}], {x, 0, nn}], x], 1] (* Geoffrey Critzer, Aug 01 2013 *)
weigh:= proc(p) proc(n) `if`(n<0, 1, coeff(mul((1+x^k)^p(k), k=1..n), x,n)) end end: wsh:= p-> n-> weigh(p)(n-1): a:= (wsh@@2)(n-> `if`(n>0 and n<12, [1$3, 2$5, 1$3][n], 0)): seq(a(n), n=1..50); # Alois P. Heinz, Sep 10 2008
Nest[CoefficientList[Series[Product[(1+x^i)^#[[i]],{i,1,Length[#]}],{x,0,40}],x]&,{1},5] (* Geoffrey Critzer, Aug 01 2013 *)
weigh:= proc(p) proc(n) `if`(n<0, 1, coeff(mul((1+x^k)^p(k), k=1..n), x,n)) end end: wsh:= p-> n-> weigh(p)(n-1): a:= (wsh@@3)(n-> `if`(n>0 and n<12, [1$3, 2$5, 1$3][n], 0)): seq(a(n), n=1..40); # Alois P. Heinz, Sep 10 2008
Nest[CoefficientList[Series[Product[(1+x^i)^#[[i]], {i, 1, Length[#]}], {x, 0, 36}], x]&, {1}, 6] (* Geoffrey Critzer, Aug 01 2013 *)
weigh:= proc(p) proc(n) local x, k; coeff(series(mul((1+x^k)^p(k), k=1..n), x, n+1), x, n) end end: wsh:= p-> n-> weigh(p)(n-1): a:= (wsh@@4)(n-> `if`(n>0 and n<12, [1$3, 2$5, 1$3][n], 0)): seq(a(n), n=1..40); # Alois P. Heinz, Sep 10 2008
Nest[CoefficientList[Series[Product[(1+x^i)^#[[i]], {i, 1, Length[#]}], {x, 0, 36}], x]&, {1}, 7] (* Geoffrey Critzer, Aug 01 2013 *)
Drop[CoefficientList[Series[x(1+x)(1+x^2)(1+x^3)(1+x^4),{x,0,11}],x],1] (* Geoffrey Critzer, Aug 01 2013 *)
weigh:= proc(p) proc(n) local x, k; coeff(series(mul((1+x^k)^p(k), k=1..n), x, n+1), x, n) end end: wsh:= p-> n-> weigh(p)(n-1): a:= (wsh@@5)(n-> `if`(n>0 and n<12, [1$3, 2$5, 1$3][n],0)): seq(a(n), n=1..33); # Alois P. Heinz, Sep 10 2008
Nest[CoefficientList[Series[Product[(1+x^i)^#[[i]], {i, 1, Length[#]}], {x, 0, 36}], x]&, {1}, 8] (* Geoffrey Critzer, Aug 01 2013 *)
weigh:= proc(p) proc(n) local x, k; coeff(series(mul((1+x^k)^p(k), k=1..n), x, n+1), x, n) end end: wsh:= p-> n-> weigh(p)(n-1): f:= n-> `if`(n>0 and n<12, [1$3, 2$5, 1$3][n], 0): a:= wsh(f)-f: seq(a(n), n=5..97); # Alois P. Heinz, Sep 10 2008
f[n_]:=Nest[CoefficientList[Series[Product[(1+x^i)^#[[i]],{i,1,Length[#]}],{x,0,50}],x]&,{1},n];Drop[f[4]-PadRight[f[3],Length[f[4]]],4] (* Geoffrey Critzer, Aug 01 2013 *)
weigh:= proc(p) proc(n) local x, k; coeff(series(mul((1+x^k)^p(k), k=1..n), x, n+1), x, n) end end: wsh:= p-> n-> weigh(p)(n-1): f:= n-> `if`(n>0 and n<12, [1$3, 2$5, 1$3][n], 0): a:= (wsh@@2)(f)-wsh(f): seq(a(n), n=6..40); # Alois P. Heinz, Sep 10 2008
f[n_]:=Nest[CoefficientList[Series[Product[(1+x^i)^#[[i]],{i,1,Length[#]}],{x,0,50}],x]&,{1},n];Drop[f[5]-PadRight[f[4], Length[f[5]]],5] (* Geoffrey Critzer, Aug 01 2013 *)
Comments