cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A038081 Number of rooted identity trees of height n. Sets of rank n.

Original entry on oeis.org

1, 1, 2, 12, 65520
Offset: 0

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

Next term is 2^65536 - 65536.

Crossrefs

Differences of A014221.
Column sums of A227819.

A227819 Number T(n,k) of n-node rooted identity trees of height k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 2, 3, 1, 0, 0, 0, 2, 5, 4, 1, 0, 0, 0, 2, 8, 9, 5, 1, 0, 0, 0, 1, 12, 18, 14, 6, 1, 0, 0, 0, 1, 17, 34, 33, 20, 7, 1, 0, 0, 0, 1, 23, 61, 72, 54, 27, 8, 1, 0, 0, 0, 0, 32, 108, 149, 132, 82, 35, 9, 1, 0, 0, 0, 0, 41, 187, 301, 303, 221, 118, 44, 10, 1
Offset: 1

Views

Author

Alois P. Heinz, Jul 31 2013

Keywords

Examples

			:   T(6,4) = 3              :  T(11,3) = 1  :
:     o       o       o     :        o      :
:    / \      |       |     :      /( )\    :
:   o   o     o       o     :     o o o o   :
:   |        / \      |     :    /| | |     :
:   o       o   o     o     :   o o o o     :
:   |       |        / \    :   |   |       :
:   o       o       o   o   :   o   o       :
:   |       |       |       :               :
:   o       o       o       :               :
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 0, 1;
  0, 0, 1, 1;
  0, 0, 0, 2,  1;
  0, 0, 0, 2,  3,   1;
  0, 0, 0, 2,  5,   4,   1;
  0, 0, 0, 2,  8,   9,   5,   1;
  0, 0, 0, 1, 12,  18,  14,   6,  1;
  0, 0, 0, 1, 17,  34,  33,  20,  7,  1;
  0, 0, 0, 1, 23,  61,  72,  54, 27,  8, 1;
  0, 0, 0, 0, 32, 108, 149, 132, 82, 35, 9, 1;
		

Crossrefs

Columns k=4-10 give: A038088, A038089, A038090, A038091, A038092, A229403, A229404.
Row sums give: A004111.
Column sums give: A038081.
Largest n with T(n,k)>0 is A038093(k).
Main diagonal and lower diagonals give (offsets may differ): A000012, A001477, A000096, A166830.
T(2n,n) gives A245090.
T(2n+1,n) gives A245091.
Cf. A034781.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k<1, 0,
          add(binomial(b((i-1)$2, k-1), j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    T:= (n, k)-> b((n-1)$2, k) -`if`(k=0, 0, b((n-1)$2, k-1)):
    seq(seq(T(n, k), k=0..n-1), n=1..15);
  • Mathematica
    Drop[Transpose[Map[PadRight[#,15]&,Table[f[n_]:=Nest[ CoefficientList[ Series[ Product[(1+x^i)^#[[i]],{i,1,Length[#]}],{x,0,15}],x]&,{1},n]; f[m]-PadRight[f[m-1],Length[f[m]]],{m,1,15}]]],1]//Grid (* Geoffrey Critzer, Aug 01 2013 *)

A038083 Number of n-node rooted identity trees of height at most 4.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 10, 13, 18, 24, 32, 41, 52, 66, 83, 102, 124, 152, 181, 216, 255, 299, 346, 400, 458, 521, 588, 659, 735, 814, 896, 979, 1067, 1151, 1239, 1324, 1407, 1486, 1564, 1635, 1700, 1759, 1809, 1853, 1887, 1912, 1925, 1932, 1925, 1912, 1887, 1853
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

A finite sequence with A038093(4) = 97 terms.

Crossrefs

Programs

  • Maple
    weigh:= proc(p) proc(n) `if`(n<0,1, coeff(mul((1+x^k)^p(k), k=1..n), x,n)) end end: wsh:= p-> n-> weigh(p)(n-1): a:= wsh(n-> `if`(n>0 and n<12, [1$3,2$5,1$3][n],0)): seq(a(n), n=1..97); # Alois P. Heinz, Sep 10 2008
  • Mathematica
    a = Drop[CoefficientList[ Series[x (1 + x) (1 + x^2) (1 + x^3) (1 + x^4), {x, 0, 11}], x], 1]; nn = 97; Drop[ CoefficientList[ Series[x Product[(1 + x^i)^a[[i]], {i, 1, 11}], {x, 0, nn}], x], 1] (* Geoffrey Critzer, Aug 01 2013 *)

Formula

Take Weigh transform of A038082 and shift right.

A038084 Number of n-node rooted identity trees of height at most 5.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 19, 31, 52, 85, 140, 228, 370, 594, 954, 1519, 2412, 3814, 6006, 9419, 14726, 22938, 35612, 55125, 85065, 130900, 200875, 307446, 469342, 714784, 1085956, 1646160, 2489838, 3757929, 5660110, 8508224, 12764585, 19114360, 28570525, 42629077
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

A finite sequence with A038093(5) = 3211265 terms.

Crossrefs

Programs

  • Maple
    weigh:= proc(p) proc(n) `if`(n<0, 1, coeff(mul((1+x^k)^p(k), k=1..n), x,n)) end end: wsh:= p-> n-> weigh(p)(n-1): a:= (wsh@@2)(n-> `if`(n>0 and n<12, [1$3, 2$5, 1$3][n], 0)): seq(a(n), n=1..50); # Alois P. Heinz, Sep 10 2008
  • Mathematica
    Nest[CoefficientList[Series[Product[(1+x^i)^#[[i]],{i,1,Length[#]}],{x,0,40}],x]&,{1},5] (* Geoffrey Critzer, Aug 01 2013 *)

Formula

Take Weigh transform of A038083 and shift right.

A038085 Number of n-node rooted identity trees of height at most 6.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 12, 24, 45, 85, 157, 289, 529, 969, 1764, 3208, 5807, 10493, 18901, 33977, 60919, 109019, 194662, 346940, 617148, 1095884, 1942576, 3437834, 6074239, 10716076, 18877025, 33205498, 58328831, 102323302, 179267087, 313674445, 548183968
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

The number of terms is A038093(6), a number that is too large to write down!

Crossrefs

Programs

  • Maple
    weigh:= proc(p) proc(n) `if`(n<0, 1, coeff(mul((1+x^k)^p(k), k=1..n), x,n)) end end: wsh:= p-> n-> weigh(p)(n-1): a:= (wsh@@3)(n-> `if`(n>0 and n<12, [1$3, 2$5, 1$3][n], 0)): seq(a(n), n=1..40);  # Alois P. Heinz, Sep 10 2008
  • Mathematica
    Nest[CoefficientList[Series[Product[(1+x^i)^#[[i]], {i, 1, Length[#]}], {x, 0, 36}], x]&, {1}, 6] (* Geoffrey Critzer, Aug 01 2013 *)

Formula

Take Weigh transform of A038084 and shift right.

A038086 Number of n-node rooted identity trees of height at most 7.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 12, 25, 51, 105, 211, 421, 832, 1641, 3224, 6328, 12382, 24200, 47197, 91915, 178683, 346897, 672443, 1301850, 2517078, 4860938, 9376300, 18066270, 34772627, 66859667, 128427832, 246456677, 472519632, 905131358, 1732313955, 3312661001
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

The number of terms is A038093(7), a number that is too large to write down!

Crossrefs

Programs

  • Maple
    weigh:= proc(p) proc(n) local x, k; coeff(series(mul((1+x^k)^p(k), k=1..n), x, n+1), x, n) end end: wsh:= p-> n-> weigh(p)(n-1): a:= (wsh@@4)(n-> `if`(n>0 and n<12, [1$3, 2$5, 1$3][n], 0)): seq(a(n), n=1..40);  # Alois P. Heinz, Sep 10 2008
  • Mathematica
    Nest[CoefficientList[Series[Product[(1+x^i)^#[[i]], {i, 1, Length[#]}], {x, 0, 36}], x]&, {1}, 7] (* Geoffrey Critzer, Aug 01 2013 *)

Formula

Take Weigh transform of A038085 and shift right.

A038082 Number of n-node rooted identity trees of height at most 3.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[x(1+x)(1+x^2)(1+x^3)(1+x^4),{x,0,11}],x],1] (* Geoffrey Critzer, Aug 01 2013 *)

A038087 Number of n-node rooted identity trees of height at most 8.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 12, 25, 52, 112, 238, 503, 1053, 2194, 4547, 9406, 19401, 39965, 82189, 168837, 346380, 709917, 1453380, 2972636, 6074138, 12400794, 25295272, 51556337, 104998985, 213681811, 434548933, 883104930, 1793484049, 3640032699, 7383188993
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

A finite sequence with a very large number of terms, A038093(8). The sum of all terms is 2^(2^(2^(2^65536))).

Crossrefs

Programs

  • Maple
    weigh:= proc(p) proc(n) local x, k; coeff(series(mul((1+x^k)^p(k), k=1..n), x, n+1), x, n) end end: wsh:= p-> n-> weigh(p)(n-1): a:= (wsh@@5)(n-> `if`(n>0 and n<12, [1$3, 2$5, 1$3][n],0)): seq(a(n), n=1..33);  # Alois P. Heinz, Sep 10 2008
  • Mathematica
    Nest[CoefficientList[Series[Product[(1+x^i)^#[[i]], {i, 1, Length[#]}], {x, 0, 36}], x]&, {1}, 8] (* Geoffrey Critzer, Aug 01 2013 *)

Formula

Take Weigh transform of A038086 and shift right.

A038088 Number of n-node rooted identity trees of height 4.

Original entry on oeis.org

1, 3, 5, 8, 12, 17, 23, 32, 41, 52, 66, 83, 102, 124, 152, 181, 216, 255, 299, 346, 400, 458, 521, 588, 659, 735, 814, 896, 979, 1067, 1151, 1239, 1324, 1407, 1486, 1564, 1635, 1700, 1759, 1809, 1853, 1887, 1912, 1925, 1932, 1925, 1912, 1887, 1853
Offset: 5

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Column k=4 of A227819.

Programs

  • Maple
    weigh:= proc(p) proc(n) local x, k; coeff(series(mul((1+x^k)^p(k), k=1..n), x, n+1), x, n) end end: wsh:= p-> n-> weigh(p)(n-1): f:= n-> `if`(n>0 and n<12, [1$3, 2$5, 1$3][n], 0): a:= wsh(f)-f: seq(a(n), n=5..97); # Alois P. Heinz, Sep 10 2008
  • Mathematica
    f[n_]:=Nest[CoefficientList[Series[Product[(1+x^i)^#[[i]],{i,1,Length[#]}],{x,0,50}],x]&,{1},n];Drop[f[4]-PadRight[f[3],Length[f[4]]],4] (* Geoffrey Critzer, Aug 01 2013 *)

Formula

a(n) = A038083(n) - A038082(n).

A038089 Number of n-node rooted identity trees of height 5.

Original entry on oeis.org

1, 4, 9, 18, 34, 61, 108, 187, 318, 528, 871, 1417, 2288, 3662, 5825, 9203, 14471, 22639, 35266, 54725, 84607, 130379, 200287, 306787, 468607, 713970, 1085060, 1645181, 2488771, 3756778, 5658871, 8506900, 12763178, 19112874, 28568961, 42627442, 63493739
Offset: 6

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

The number of terms with a(n)>0 is A038093(5)-5 = 3211260. - Alois P. Heinz, Sep 22 2013

Crossrefs

Column k=5 of A227819.

Programs

  • Maple
    weigh:= proc(p) proc(n) local x, k; coeff(series(mul((1+x^k)^p(k), k=1..n), x, n+1), x, n) end end: wsh:= p-> n-> weigh(p)(n-1): f:= n-> `if`(n>0 and n<12, [1$3, 2$5, 1$3][n], 0): a:= (wsh@@2)(f)-wsh(f): seq(a(n), n=6..40);  # Alois P. Heinz, Sep 10 2008
  • Mathematica
    f[n_]:=Nest[CoefficientList[Series[Product[(1+x^i)^#[[i]],{i,1,Length[#]}],{x,0,50}],x]&,{1},n];Drop[f[5]-PadRight[f[4], Length[f[5]]],5] (* Geoffrey Critzer, Aug 01 2013 *)

Formula

Showing 1-10 of 15 results. Next