cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A038081 Number of rooted identity trees of height n. Sets of rank n.

Original entry on oeis.org

1, 1, 2, 12, 65520
Offset: 0

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

Next term is 2^65536 - 65536.

Crossrefs

Differences of A014221.
Column sums of A227819.

A038093 Number of nodes in largest rooted identity tree of height n.

Original entry on oeis.org

1, 2, 4, 11, 97, 3211265
Offset: 0

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

The next term is 19735 digits long, which is too large even for a b-file.
Also, the sequence gives the number of pairs of braces in the n-th iteration of the von Neumann universe. - Adam P. Goucher, Aug 18 2013

Examples

			For n = 3, the n-th iteration of the von Neumann universe is V3 = {{}, {{}}, {{{}}}, {{},{{}}}}, which has a(3) = 11 pairs of braces.
		

Crossrefs

Programs

  • Maple
    h:= (b, k)-> `if`(k=0, 1, b^h(b, k-1)):
    a:= proc(n) option remember; `if`(n=0, 1,
           1+(1+a(n-1))/2*h(2, n-1))
        end:
    seq(a(n), n=0..5);  # Alois P. Heinz, Aug 25 2017
  • Mathematica
    Map[#[[1]]&,NestList[{(#[[1]]+1)*(2^#[[2]])/2+1,2^#[[2]]}&,{1,0},6]] (* Adam P. Goucher, Aug 18 2013 *)

Formula

Recurrence relation: a(n+1) = (a(n) + 1)*(2^^n)/2 + 1 where 2^^n is Knuth's up-arrow notation. - Adam P. Goucher, Aug 18 2013

Extensions

a(6) from Adam P. Goucher, Aug 18 2013

A038083 Number of n-node rooted identity trees of height at most 4.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 10, 13, 18, 24, 32, 41, 52, 66, 83, 102, 124, 152, 181, 216, 255, 299, 346, 400, 458, 521, 588, 659, 735, 814, 896, 979, 1067, 1151, 1239, 1324, 1407, 1486, 1564, 1635, 1700, 1759, 1809, 1853, 1887, 1912, 1925, 1932, 1925, 1912, 1887, 1853
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

A finite sequence with A038093(4) = 97 terms.

Crossrefs

Programs

  • Maple
    weigh:= proc(p) proc(n) `if`(n<0,1, coeff(mul((1+x^k)^p(k), k=1..n), x,n)) end end: wsh:= p-> n-> weigh(p)(n-1): a:= wsh(n-> `if`(n>0 and n<12, [1$3,2$5,1$3][n],0)): seq(a(n), n=1..97); # Alois P. Heinz, Sep 10 2008
  • Mathematica
    a = Drop[CoefficientList[ Series[x (1 + x) (1 + x^2) (1 + x^3) (1 + x^4), {x, 0, 11}], x], 1]; nn = 97; Drop[ CoefficientList[ Series[x Product[(1 + x^i)^a[[i]], {i, 1, 11}], {x, 0, nn}], x], 1] (* Geoffrey Critzer, Aug 01 2013 *)

Formula

Take Weigh transform of A038082 and shift right.

A038088 Number of n-node rooted identity trees of height 4.

Original entry on oeis.org

1, 3, 5, 8, 12, 17, 23, 32, 41, 52, 66, 83, 102, 124, 152, 181, 216, 255, 299, 346, 400, 458, 521, 588, 659, 735, 814, 896, 979, 1067, 1151, 1239, 1324, 1407, 1486, 1564, 1635, 1700, 1759, 1809, 1853, 1887, 1912, 1925, 1932, 1925, 1912, 1887, 1853
Offset: 5

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Column k=4 of A227819.

Programs

  • Maple
    weigh:= proc(p) proc(n) local x, k; coeff(series(mul((1+x^k)^p(k), k=1..n), x, n+1), x, n) end end: wsh:= p-> n-> weigh(p)(n-1): f:= n-> `if`(n>0 and n<12, [1$3, 2$5, 1$3][n], 0): a:= wsh(f)-f: seq(a(n), n=5..97); # Alois P. Heinz, Sep 10 2008
  • Mathematica
    f[n_]:=Nest[CoefficientList[Series[Product[(1+x^i)^#[[i]],{i,1,Length[#]}],{x,0,50}],x]&,{1},n];Drop[f[4]-PadRight[f[3],Length[f[4]]],4] (* Geoffrey Critzer, Aug 01 2013 *)

Formula

a(n) = A038083(n) - A038082(n).
Showing 1-4 of 4 results.