A038194 Iterated sum-of-digits of n-th prime; or digital root of n-th prime; or n-th prime modulo 9.
2, 3, 5, 7, 2, 4, 8, 1, 5, 2, 4, 1, 5, 7, 2, 8, 5, 7, 4, 8, 1, 7, 2, 8, 7, 2, 4, 8, 1, 5, 1, 5, 2, 4, 5, 7, 4, 1, 5, 2, 8, 1, 2, 4, 8, 1, 4, 7, 2, 4, 8, 5, 7, 8, 5, 2, 8, 1, 7, 2, 4, 5, 1, 5, 7, 2, 7, 4, 5, 7, 2, 8, 7, 4, 1, 5, 2, 1, 5, 4, 5, 7, 8, 1, 7, 2, 8
Offset: 1
Examples
Prime(5) = 11, 1 + 1 = 2 hence a(5) = 2. a(297)=7 because the 297th prime is 1951 and 1+9+5+1 = 16 -> 1+6 = 7.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..10000
- Andrew Granville and Greg Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004
Programs
-
Haskell
a038194 = flip mod 9 . a000040 -- Reinhard Zumkeller, Dec 10 2014
-
Magma
[p mod 9: p in PrimesUpTo(500)]; // Vincenzo Librandi, May 06 2014
-
Maple
A038194 := proc(n) return ithprime(n) mod 9: end: seq(A038194(n), n=1..100); # Nathaniel Johnston, May 04 2011
-
Mathematica
Table[Mod[Prime[n], 9], {n, 200}] Mod[Prime[Range[100]], 9] (* Vincenzo Librandi, May 06 2014 *)
-
PARI
forprime(p=2,600,print1(p%9,","))
Formula
Sum_k={1..n} a(k) ~ (9/2)*n. - Amiram Eldar, Dec 11 2024
Extensions
Edited by Klaus Brockhaus, Feb 16 2002
Edited at the suggestion of R. J. Mathar by N. J. A. Sloane, May 14 2008
Comments