A038202 Least k such that n! + k^2 is a square.
1, 1, 3, 1, 9, 27, 15, 18, 288, 288, 420, 464, 1856, 10080, 46848, 210240, 400320, 652848, 3991680, 27528402, 32659200, 163296000, 1143463200, 1305467240, 6840489600, 9453465438, 337082683248, 163425485250, 8376514506360, 8440230839040, 5088099594240
Offset: 4
Keywords
Links
- Sudipta Mallick, Table of n, a(n) for n = 4..58
- Eric Weisstein's World of Mathematics, Brocard's Problem
Crossrefs
Programs
-
Mathematica
Table[f=n!/4; x=Max[Select[Divisors[f], #<=Sqrt[f]&]]; f/x-x, {n, 4, 20}] (* T. D. Noe, Nov 02 2004 *)
-
PARI
a(n) = my(k=0); while(!issquare(n!+k^2), k++); k; \\ Michel Marcus, Sep 16 2018
Extensions
a(30)-a(34) from Jon E. Schoenfield, Sep 15 2018
Comments