A038205 Number of derangements of n where minimal cycle size is at least 3.
1, 0, 0, 2, 6, 24, 160, 1140, 8988, 80864, 809856, 8907480, 106877320, 1389428832, 19452141696, 291781655984, 4668504894480, 79364592318720, 1428562679845888, 27142690734936864, 542853814536802656, 11399930109077490560, 250798462399300784640
Offset: 0
Examples
a(5) = 24 because, with a minimum cycle size of 3, the only way to derange all 5 elements is to have them move around in one large 5-cycle. The number of possible moves is (5-1)! = 4! = 24.
References
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
- H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 147, Eq. 5.2.9 (q=2).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200 (first 51 terms from Arie Bos)
- Joerg Arndt, Generating Random Permutations, PhD thesis, Australian National University, Canberra, Australia, (2010).
- Poly H. da Silva, Arash Jamshidpey, and Simon Tavaré, Random derangements and the Ewens Sampling Formula, arXiv:2006.04840 [math.PR], 2020.
- J. East and R. D. Gray, Idempotent generators in finite partition monoids and related semigroups, arXiv preprint arXiv:1404.2359, 2014. See Table 4.
- Sergi Elizalde and Emeric Deutsch, The degree of asymmetry of a sequence, Enum. Combinat. Applic. 2 (2022) no 1 #S2R7, P(0,0,1,x).
- Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
- H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 176, Eq. 5.2.9 (q=2).
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-x-x^2/2)/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 25 2018 -
Maple
with(combstruct): ZL2:=[S,{S=Set(Cycle(Z,card>2))},labeled] :seq(count(ZL2,size=n), n=0..21); # Zerinvary Lajos, Sep 26 2007 with(combstruct):a:=proc(m) [ZZ,{ZZ=Set(Cycle(Z,card>m))},labeled]; end: A038205:=a(2):seq(count(A038205,size=n), n=0..21); # Zerinvary Lajos, Oct 02 2007 G:= exp(-x-x^2/2)/(1-x): Gser:=series(G,x,26): a:= n-> n!*coeff(Gser, x,n): seq(a(n), n=0..25); # Paul Weisenhorn, May 29 2010
-
Mathematica
max = 21; f[x_] := Exp[-x - x^2/2]/(1 - x); CoefficientList[ Series[ f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Dec 07 2011, after Vladimir Kruchinin *)
-
PARI
x='x+O('x^30); Vec(serlaplace(exp(-x-x^2/2)/(1-x))) \\ G. C. Greubel, Jun 25 2018
Formula
a(n) = Sum_{i=3..n} binomial(n-1,i-1) * (i-1)! * a(n-i).
E.g.f.: exp(-x-x^2/2)/(1-x) = exp( Sum_{k>2} x^k / k ).
a(n) = n! * Sum_{m=1..n} ((Sum_{k=0..m} k!*(-1)^(m-k) *binomial(m,k) *Sum_{i=0..n-m} abs(stirling1(i+k,k)) *binomial(m-k,n-m-i) *2^(-n+m+i) /(i+k)!))/m!; a(0)=1. - Vladimir Kruchinin, Feb 01 2011
a(n) = (n-1)*a(n-1) + (n-1)*(n-2)*a(n-3). - Peter Bala, Apr 18 2012
a(n) ~ n! * exp(-3/2). - Vaclav Kotesovec, Jul 30 2013
Extensions
Definition corrected by Brendan McKay, Jun 02 2007
Comments