cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038255 Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j).

Original entry on oeis.org

1, 6, 1, 36, 12, 1, 216, 108, 18, 1, 1296, 864, 216, 24, 1, 7776, 6480, 2160, 360, 30, 1, 46656, 46656, 19440, 4320, 540, 36, 1, 279936, 326592, 163296, 45360, 7560, 756, 42, 1, 1679616, 2239488, 1306368, 435456, 90720, 12096, 1008
Offset: 0

Views

Author

Keywords

Comments

T(n,k) = A013613(n,n-k), 0 <= k <= n. - Reinhard Zumkeller, Nov 21 2013

Examples

			1
6, 1
36, 12, 1
216, 108, 18, 1
1296, 864, 216, 24, 1
7776, 6480, 2160, 360, 30, 1
46656, 46656, 19440, 4320, 540, 36, 1
279936, 326592, 163296, 45360, 7560, 756, 42, 1
1679616, 2239488, 1306368, 435456, 90720, 12096, 1008, 48, 1
		

Crossrefs

Cf. A038207.
Cf. A000420 (row sums), A013613 (mirrored), A110440, A007318, A000400.

Programs

  • Haskell
    a038255 n k = a038255_tabl !! n !! k
    a038255_row n = a038255_tabl !! n
    a038255_tabl = map reverse a013613_tabl
    -- Reinhard Zumkeller, Nov 21 2013
  • Maple
    for i from 0 to 8 do seq(binomial(i, j)*6^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
  • Mathematica
    Table[Binomial[n,m]6^(n-m),{n,0,10},{m,0,n}]//Flatten (* Harvey P. Dale, Dec 25 2019 *)

Formula

G.f.: 1/(1 - 6*x - x*y). - Ilya Gutkovskiy, Apr 21 2017