A038255 Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j).
1, 6, 1, 36, 12, 1, 216, 108, 18, 1, 1296, 864, 216, 24, 1, 7776, 6480, 2160, 360, 30, 1, 46656, 46656, 19440, 4320, 540, 36, 1, 279936, 326592, 163296, 45360, 7560, 756, 42, 1, 1679616, 2239488, 1306368, 435456, 90720, 12096, 1008
Offset: 0
Examples
1 6, 1 36, 12, 1 216, 108, 18, 1 1296, 864, 216, 24, 1 7776, 6480, 2160, 360, 30, 1 46656, 46656, 19440, 4320, 540, 36, 1 279936, 326592, 163296, 45360, 7560, 756, 42, 1 1679616, 2239488, 1306368, 435456, 90720, 12096, 1008, 48, 1
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
- B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
Programs
-
Haskell
a038255 n k = a038255_tabl !! n !! k a038255_row n = a038255_tabl !! n a038255_tabl = map reverse a013613_tabl -- Reinhard Zumkeller, Nov 21 2013
-
Maple
for i from 0 to 8 do seq(binomial(i, j)*6^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
-
Mathematica
Table[Binomial[n,m]6^(n-m),{n,0,10},{m,0,n}]//Flatten (* Harvey P. Dale, Dec 25 2019 *)
Formula
G.f.: 1/(1 - 6*x - x*y). - Ilya Gutkovskiy, Apr 21 2017
Comments