cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038499 Number of partitions of n into a prime number of parts.

Original entry on oeis.org

1, 0, 1, 2, 3, 5, 7, 10, 13, 18, 23, 31, 39, 52, 65, 84, 104, 134, 165, 210, 258, 324, 397, 495, 603, 747, 908, 1115, 1351, 1652, 1993, 2425, 2918, 3531, 4237, 5106, 6105, 7330, 8741, 10449, 12425, 14804, 17549, 20839, 24637, 29155, 34377, 40559, 47688, 56100
Offset: 0

Views

Author

Christian G. Bower, Feb 15 1999

Keywords

Comments

Also, number of partitions of n whose largest part is a prime. E.g., for a(7) = 10 we have 6+1 = 5+2 = 4+3 = 5+1+1 = 4+2+1 = 3+3+1 = 3+2+2 = 3+1+1+1+1 = 2+2+1+1+1 = 1+1+1+1+1+1+1 and 7 = 5+2 = 5+1+1 = 3+3+1 = 3+2+2 = 3+2+1+1 = 3+1+1+1+1 = 2+2+2+1 = 2+2+1+1+1 = 2+1+1+1+1+1. - Jon Perry Jul 06 2004

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i) option remember; `if`(n<0, 0,
          `if`(n=0 or i=1, 1, `if`(i<1, 0, b(n, i-1)+
          `if`(i>n, 0, b(n-i, i)))))
        end:
    a:= n-> `if`(n=0, 1, add((p-> b(n-p, p)
               )(ithprime(i)), i=1..pi(n))):
    seq(a(n), n=0..60);  # Alois P. Heinz, Sep 24 2015
  • Mathematica
    nn=50;Table[CoefficientList[Series[x^p Product[1/(1-x^i),{i,1,p}],{x,0,nn}],x],{p,Table[Prime[m],{m,1,PrimePi[nn]}]}]//Total  (* Geoffrey Critzer, Mar 10 2013 *)

Formula

G.f.: Sum_{n>=1}(x^prime(n)/Product_{i=1..prime(n)}(1-x^i)). - Vladeta Jovovic, Dec 25 2003