A038509 Composite numbers congruent to +-1 mod 6.
25, 35, 49, 55, 65, 77, 85, 91, 95, 115, 119, 121, 125, 133, 143, 145, 155, 161, 169, 175, 185, 187, 203, 205, 209, 215, 217, 221, 235, 245, 247, 253, 259, 265, 275, 287, 289, 295, 299, 301, 305, 319, 323, 325, 329, 335, 341, 343, 355, 361, 365, 371, 377, 385
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a038509 n = a038509_list !! (n-1) a038509_list = [x | x <- a002808_list, gcd x 6 == 1] -- Reinhard Zumkeller, Aug 05 2014, Jun 30 2012
-
Maple
A038509 := proc(n) option remember; if n = 1 then 25; else for a from procname(n-1)+1 do if not isprime(a) and modp(a,6) in {1,5} then return a; end if; end do: end if; end proc: seq(A038509(n),n=1..30) ; # R. J. Mathar, Feb 28 2020
-
Mathematica
Select[Range[1000], FactorInteger[#][[1,1]] >= 5 && ! PrimeQ[#] &] (* Robert G. Wilson v, Dec 19 2009 *) With[{nn=400},Select[Rest[Complement[Range[nn],Prime[Range[ PrimePi[ nn]]]]], MemberQ[ {1,5},Mod[#,6]]&]] (* Harvey P. Dale, Feb 21 2013 *) Select[Range[400],CompositeQ[#]&&MemberQ[{1,5},Mod[#,6]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 13 2019 *)
-
PARI
is(n)=gcd(n,6)==1 && !isprime(n) && n>7 \\ Charles R Greathouse IV, Nov 20 2012
Formula
a(n) ~ 3n. - Charles R Greathouse IV, Nov 20 2012
Extensions
More terms from Robert G. Wilson v, Dec 19 2009
Entry revised by N. J. A. Sloane, Dec 31 2011, at the suggestion of Gary Detlefs
Comments