cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038561 Left-hand border of triangle A046937.

Original entry on oeis.org

1, 2, 3, 8, 24, 83, 324, 1400, 6609, 33758, 185136, 1083233, 6726366, 44130128, 304741623, 2207682188, 16729947276, 132281116715, 1088831511000, 9311082630620, 82569723552561, 758057178490082, 7194283782101844, 70481938088367569
Offset: 0

Views

Author

Keywords

Comments

For n>1: a(n) is the number of entries in the last blocks of all set partitions of [n]. a(3) = 8 because the number of entries in the last blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 3+1+1+2+1 = 8. - Alois P. Heinz, May 08 2017

References

  • H. W. Gould, A linear binomial recurrence and the Bell numbers and polynomials, preprint, 1998

Crossrefs

A040027(n) + B(n), where B(n) = Bell numbers A000110.
Column k=1 of A286416 (for n>1).

Programs

  • Haskell
    a038561 = head . a046937_row  -- Reinhard Zumkeller, Jan 06 2014
  • Maple
    A038561List := proc(m) local A, P, n; A := [1,2]; P := [1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([A[-1], op(P)]);
    A := [op(A), P[-1]] od; A end: A038561List(24); # Peter Luschny, Mar 24 2022
  • Mathematica
    a[0, 0] = 1; a[1, 0] = 2; a[n_, 0] := a[n-1, n-1]; a[n_, k_] := a[n, k] = a[n, k-1] + a[n-1, k-1]; a[n_] := a[n, 0]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jun 06 2013 *)

Formula

G.f. A(x) satisfies: A(x) = 1 + x * (1 + A(x/(1 - x)) / (1 - x)). - Ilya Gutkovskiy, Jun 30 2020