A038565 Number of times digits are repeated in A038564.
1, 1, 2, 1, 3, 3, 3, 3, 3, 5, 5, 3, 3, 4, 3, 3, 3, 5, 3, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
54023 [ 1(1),2(1),3(1),4(1),5(1),6(1),7(1),8(1),9(1) ], 54203 [ 1(1),2(1),3(1),4(1),5(1),6(1),7(1),8(1),9(1) ], 55868 [ 1(2),2(2),3(2),4(2),5(2),6(2),7(2),8(2),9(2) ], 500407 [ 1(1),2(1),3(1),4(1),5(1),6(1),7(1),8(1),9(1) ].
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A038564.
Programs
-
Python
from sympy import divisors from collections import Counter def okval(n): c = Counter() for d in divisors(n, generator=True): c.update(str(d)) return c["1"] if len(set([c[i] for i in "123456789"])) == 1 else False print([okval(k) for k in range(1, 60000) if okval(k)]) # Michael S. Branicky, Nov 13 2022
Extensions
More terms from Sascha Kurz, Oct 18 2001
Comments