A038564 Numbers whose list of divisors includes each digit 1-9 equally often.
54023, 54203, 55868, 500407, 556744, 769858, 1187666, 1566986, 1875098, 3545924, 5594156, 5733406, 5849014, 5908304, 6100594, 6712006, 7605544, 9106868, 9580654, 10909864, 23456789, 23458679, 23459687, 23465789, 23465987, 23469587, 23475869, 23478569, 23489657
Offset: 1
Examples
55868 is a term because, among its divisors (which are 1, 2, 4, 13967, 27934, 55868), each digit from 1 through 9 occurs exactly twice.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A038565.
Programs
-
Mathematica
ld9Q[n_]:=Module[{d=DeleteCases[Sort[Flatten[IntegerDigits/@Divisors[ n]]],0]},Length[ Intersection[ d,Range[ 9]]] == 9&&Length[Union[ Length/@Split[ d]]]==1]; Select[ Range[ 235*10^5],ld9Q] (* Harvey P. Dale, Dec 20 2022 *)
-
Python
from sympy import divisors from collections import Counter def ok(n): c = Counter() for d in divisors(n, generator=True): c.update(str(d)) return len(set([c[i] for i in "123456789"])) == 1 print([k for k in range(1, 60000) if ok(k)]) # Michael S. Branicky, Nov 13 2022
Extensions
More terms from Sascha Kurz, Oct 18 2001
a(26) and beyond from Michael S. Branicky, Nov 13 2022
Comments