cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A038564 Numbers whose list of divisors includes each digit 1-9 equally often.

Original entry on oeis.org

54023, 54203, 55868, 500407, 556744, 769858, 1187666, 1566986, 1875098, 3545924, 5594156, 5733406, 5849014, 5908304, 6100594, 6712006, 7605544, 9106868, 9580654, 10909864, 23456789, 23458679, 23459687, 23465789, 23465987, 23469587, 23475869, 23478569, 23489657
Offset: 1

Views

Author

Keywords

Examples

			55868 is a term because, among its divisors (which are 1, 2, 4, 13967, 27934, 55868), each digit from 1 through 9 occurs exactly twice.
		

Crossrefs

Cf. A038565.

Programs

  • Mathematica
    ld9Q[n_]:=Module[{d=DeleteCases[Sort[Flatten[IntegerDigits/@Divisors[ n]]],0]},Length[ Intersection[ d,Range[ 9]]] == 9&&Length[Union[ Length/@Split[ d]]]==1]; Select[ Range[ 235*10^5],ld9Q] (* Harvey P. Dale, Dec 20 2022 *)
  • Python
    from sympy import divisors
    from collections import Counter
    def ok(n):
        c = Counter()
        for d in divisors(n, generator=True): c.update(str(d))
        return len(set([c[i] for i in "123456789"])) == 1
    print([k for k in range(1, 60000) if ok(k)]) # Michael S. Branicky, Nov 13 2022

Extensions

More terms from Sascha Kurz, Oct 18 2001
a(26) and beyond from Michael S. Branicky, Nov 13 2022

A045818 Number of times the digits are repeated in A045817.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 4, 2, 2, 2, 2, 8, 2, 2, 2, 8, 2, 4, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 4, 2, 2, 2, 4, 2, 4, 20, 4, 4, 4, 4, 4, 4, 8, 4, 4, 4, 4, 4, 4, 8, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

Keywords

Comments

e.g. 3602[ 0(2),1(2),2(2),3(2),4(2),5(2),6(2) ], 246506[ 0(2),1(2),2(2),3(2),4(2),5(2),6(2) ], 264533[ 0(2),1(2),2(2),3(2),4(2),5(2),6(2) ],..

Crossrefs

Extensions

More terms from Sean A. Irvine, Sep 26 2011

A045799 In the list of divisors of n (in binary), each digit 0-1 appears equally often.

Original entry on oeis.org

100, 10001, 10100, 11000, 100100, 1000011, 1001001, 1001010, 1001100, 1010010, 1011000, 1100001, 1100100, 1101000, 1110000, 10101010, 11001100, 11011000, 11110000, 100000111, 100001101, 100010101, 100010110, 100011001, 100011100
Offset: 1

Views

Author

Keywords

Comments

The corresponding decimal values of the terms are 4, 17, 20, 24, 36, 67, 73, 74, 76, 82, 88, 97, 100, 104, 112, 170, 204, 216, 240, 263, 269, 277, 278, 281, 284, ... - Amiram Eldar, Sep 08 2019

Examples

			E.g. divisors of 10100 are (1, 10, 100, 101, 1010, 10100); the numbers of digits (0-1) are [ 0(9),1(9) ].
		

Crossrefs

Programs

  • Mathematica
    fQ[v_] := Length[v] == 2 && v[[1]] == v[[2]]; aQ[n_] := fQ[(Tally @ Flatten @ Join @ IntegerDigits[Divisors[n], 2])[[;; , 2]]]; FromDigits /@ IntegerDigits[Select[ Range[284], aQ], 2] (* Amiram Eldar, Sep 08 2019 *)

A045810 Number of times the digits are repeated in A045799.

Original entry on oeis.org

3, 3, 9, 12, 15, 4, 4, 8, 12, 8, 16, 4, 18, 16, 20, 18, 27, 36, 45, 5, 5, 5, 10, 5, 15, 5, 10, 10, 36, 10, 15, 5, 20, 5, 15, 25, 15, 5, 10, 10, 5, 20, 15, 20, 5, 15, 40, 25, 8, 24, 33, 33, 22, 33, 55, 6, 51, 6, 6, 6, 12, 18, 6, 12, 6, 12, 6, 18, 12, 12, 23, 6, 6, 12, 6, 6, 6, 12, 24
Offset: 1

Views

Author

Keywords

Examples

			100[ 0(3),1(3) ], 10001[ 0(3),1(3) ], 10100[ 0(9),1(9) ],....
		

Crossrefs

Programs

  • Mathematica
    f[v_] := If[Length[v] == 2 && v[[1]] == v[[2]], v[[1]], 0]; a[n_] := f[(Tally @ Flatten @ Join @ IntegerDigits[Divisors[n], 2])[[;; , 2]]]; Select[a /@ Range[ 1200], # > 0 &] (* Amiram Eldar, Sep 08 2019 *)

Extensions

Offset corrected by Amiram Eldar, Sep 08 2019

A045811 In the list of divisors of n (in base 3), each digit 0-2 appears equally often.

Original entry on oeis.org

20, 10022, 10202, 12002, 12020, 12200, 20012, 20102, 20120, 20201, 20210, 20220, 21002, 21200, 22002, 22010, 22020, 22100, 22200, 1210020, 1210022, 1212200, 1220100, 10222011, 12200220, 12202020, 12210210, 20010121, 20010212
Offset: 1

Views

Author

Keywords

Examples

			Divisors of 12200 are (1, 10, 100, 122, 1220, 12200); the numbers of digits (0-2) are [0(6), 1(6), 2(6)].
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local D,v,r,i;
      D:= map(op@convert,convert(numtheory:-divisors(n),list),base,3);
      if nops({numboccur(0,D),numboccur(1,D),numboccur(2,D)})=1 then
        r:= convert(n,base,3);
        add(r[i]*10^(i-1),i=1..nops(r))
      fi
    end proc:
    map(f, [$1..3^8]); # Robert Israel, Nov 14 2020

A045817 Numbers n written in base 7, where in the list of divisors of n (in base 7), each digit 0-6 appears equally often.

Original entry on oeis.org

3602, 246506, 264533, 266405, 303652, 320556, 324255, 325605, 342560, 345064, 345406, 345604, 346340, 362055, 414056, 430462, 434630, 435065, 436430, 436550, 453605, 500426, 500641, 506022, 524360, 524406, 526433, 530632, 532650, 533402
Offset: 1

Views

Author

Keywords

Examples

			E.g., divisors of 342560 (base 7) are (1,2,10,20,15463,34256,154630,342560) (all in base 7); the numbers of digits (0-6) are [0(4),1(4),2(4),3(4),4(4),5(4),6(4)].
		

Crossrefs

Programs

  • Maple
    N:= 7^6:
    cv7:= proc(n) local L; L:= convert(n,base,7);
    add(L[i]*10^(i-1),i=1..nops(L)) end proc:
    V:= Matrix(N,7,datatype=integer[8]):
    count:= 0: Res:= NULL:
    for i from 1 to N do
      L:= convert(i,base,7);
      M:= Vector[row]([seq(numboccur(d,L),d=0..6)],datatype=integer[8]);
      for r from i to N by i do V[r,..]:= V[r,..] + M od;
      if nops(convert(V[i,..],set))=1 then
        count:= count+1;
        w:= cv7(i);
        Res:= Res,w;
      fi
    od:
    Res; # Robert Israel, Sep 07 2018

Extensions

Definition clarified by Robert Israel, Sep 07 2018

A045812 Number of times the digits are repeated in A045811.

Original entry on oeis.org

2, 2, 2, 2, 4, 6, 2, 2, 4, 2, 4, 8, 2, 6, 4, 4, 8, 9, 12, 20, 10, 30, 30, 6, 12, 12, 12, 6, 6, 24, 6, 12, 6, 12, 12, 6, 6, 12, 18, 6, 6, 6, 6, 12, 6, 12, 12, 12, 12, 6, 6, 18, 18, 12, 6, 6, 18, 6, 6, 12, 12, 6, 12, 6, 6, 12, 18, 18, 6, 12, 18, 12, 6, 54, 24, 6, 18, 12, 6, 12, 6, 6, 36, 12, 6
Offset: 0

Views

Author

Keywords

Comments

e.g. 20[ 0(2),1(2),2(2) ],10022[ 0(2),1(2),2(2) ],10202[ 0(2),1(2),2(2) ],....

Crossrefs

A045813 Base-4 numbers whose list of divisors (in base 4) contains each digit 0-3 the same number of times.

Original entry on oeis.org

320, 20132, 21320, 22033, 23201, 30023, 30203, 30320, 32320, 321202, 1002233, 1002323, 1022033, 1022303, 1032023, 1200323, 1202033, 1202303, 1230203, 1232003, 1300223, 1302023, 1302203, 1320023, 2003201, 2003213, 2003231, 2003312, 2012303, 2013032, 2013212
Offset: 1

Views

Author

Keywords

Examples

			Divisors of 32320 are {1, 2, 10, 13, 20, 32, 101, 130, 202, 320, 1010, 1313, 2020, 3232, 13130, 32320} in base 4; each digit appears 12 times.
		

Crossrefs

Programs

  • Python
    from sympy import divisors
    from collections import Counter
    from sympy.ntheory import digits
    def b4(n): return int("".join(map(str, digits(n, 4)[1:])))
    def ok(n):
        c = Counter()
        for d in divisors(n, generator=True): c.update(digits(d, 4)[1:])
        return c[0] == c[1] == c[2] == c[3]
    print([b4(k) for k in range(1, 4**7) if ok(k)]) # Michael S. Branicky, Nov 12 2022

A045814 Number of times the digits are repeated in A045813.

Original entry on oeis.org

4, 3, 6, 3, 3, 3, 3, 6, 12, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 4, 2, 2, 6, 2, 2, 2, 2, 4, 6, 4, 2, 2, 6, 8, 2, 4, 4, 6, 2, 2, 4, 6, 2, 4, 16, 2, 2, 4, 4, 4, 2, 8, 2, 2, 4, 2, 12, 2, 2, 12, 10, 2, 4, 2, 4, 12, 2, 6, 12, 10, 4, 4, 4, 4, 2, 4, 4, 4, 4, 8, 4, 8, 4, 4, 2, 2, 2, 6, 4
Offset: 1

Views

Author

Keywords

Examples

			Divisors of 320 are {1, 2, 10, 13, 20, 32, 130, 320} in base 4; each digit appears 4 times, so a(1) = 4.
Divisors of 20132 are {1, 2, 10033, 20132} in base 4; each digit appears 3 times, so a(2) = 3.
Divisors of 21320 are {1, 2, 10, 20, 1033, 2132, 10330, 21320} in base 4; each digit appears 6 times, so a(3) = 6
		

Crossrefs

A045815 Integers k such that in the list of divisors of k (in base 6), each digit 0-5 appears equally often.

Original entry on oeis.org

20345, 23405, 30245, 30425, 32045, 40235, 40325, 42035, 43025, 45050, 45450, 50450, 52023, 22043435, 22053335, 23234545, 23344501, 23452345, 24034455, 24243535, 24352435, 24403451, 24433051, 30034454, 30202455, 30334045, 30340454, 30424235
Offset: 1

Views

Author

Keywords

Examples

			Divisors of 45050 are (1,2,3,10,4505,13414,22323,45050); the numbers of digits (0-5) are [ 0(4),1(4),2(4),3(4),4(4),5(4) ]
		

Crossrefs

Programs

  • Maple
    k := 0:for i from 1 to 35000 do for j from 0 to 5 do a[j] := 0:end do:c := divisors(i):for j from 1 to nops(c) do b := convert(c[j],base,6); for h from 1 to nops(b) do a[ b[h] ] := a[ b[h] ]+1:end do:end do: if(a[0]=a[1] and a[1]=a[2] and a[2]=a[3] and a[4]=a[5]) then k := k+1:q := convert(i,base,6):d[k] := sum(q[o+1]*10^o,o=0..nops(q)-1):end if:end do: q := seq(d[l],l=1..k);
    isA045815 := proc(n) local c,j,b,h,a,q ; a := [0,0,0,0,0,0] : c := numtheory[divisors](n): for j from 1 to nops(c) do b := convert(c[j], base, 6); for h from 1 to nops(b) do a[b[h]+1] := a[b[h]+1]+1: end do: end do: if(a[1]=a[2] and a[2]=a[3] and a[3]=a[4] and a[4]=a[5] and a[5]=a[6]) then q := convert(n,base,6) ; add(q[o+1]*10^o,o=0..nops(q)-1) ; else -1 ; end if: end: n := 1: while true do a := isA045815(n) : if a >= 0 then printf("%d, ",a) ; fi ; n := n+1 : od : # R. J. Mathar, Jun 26 2007

Extensions

More terms from Sascha Kurz, Mar 24 2002
Corrected by R. J. Mathar, Jun 26 2007
More terms from Sean A. Irvine, Sep 26 2011
Showing 1-10 of 14 results. Next