cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A144467 A038601 type numbers where Prime of Prime numbers: a(n)=Prime[A038601 (n)].

Original entry on oeis.org

3, 5, 11, 41, 919, 3517, 6691, 13709, 23669, 52301, 83101, 146051, 417959, 777901, 970231, 1076401, 1894117, 2315069, 2592269, 2641469, 2777111, 2997227, 3523343, 3788843, 4076257, 4159231, 5082059, 5271961, 5295569, 5363801, 6451931
Offset: 1

Views

Author

Roger L. Bagula, Oct 09 2008

Keywords

Crossrefs

Cf. A038601.

Programs

  • Mathematica
    (*A038601*) b = {2, 3, 5, 13, 157, 491, 863, 1621, 2633, 5347, 8117, 13513, 35227, 62311, 76367, 84017, 141637, 170537, 189353, 192667, 201821, 216617, 251677, 269257, 288203, 293621, 353807, 366103, 367621, 372023, 441703, 444167, 478571, 518657, 582371, 626333}; c = Table[Prime[b[[n]]], {n, 1, Length[b]}]

Formula

a(n)=Prime[A038601 (n)].

A163996 Primes with a composite number of partitions.

Original entry on oeis.org

7, 11, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293
Offset: 1

Views

Author

Omar E. Pol, Aug 09 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100]],!PrimeQ[PartitionsP[#]]&] (* Harvey P. Dale, Jun 22 2014 *)

Formula

A000040 \ A038601. [From R. J. Mathar, Sep 27 2009]

Extensions

More terms from R. J. Mathar, Sep 27 2009

A144466 Primes p such that the partition number of the p-th prime is also a prime.

Original entry on oeis.org

2, 3, 37, 257, 1021, 1601, 67757, 193873, 331889, 332099, 843181, 1278029, 1437133, 1613153, 2160797, 2423873, 3076313, 3506039, 4108889, 4430753, 4656089, 5724349, 6206119, 7457503, 7487759, 7798649, 7978849, 8794811, 9036997, 11846183, 13075709, 13458323, 14773721, 15227543
Offset: 1

Views

Author

Roger L. Bagula, Oct 09 2008

Keywords

Examples

			37 is in the sequence because the 37th prime is 157, the partition number of 157 is 80630964769 and 80630964769 is a prime.
		

Crossrefs

Cf. A038601.

Programs

  • Mathematica
    Flatten[Table[If[PrimeQ[PartitionsP[Prime[Prime[n]]]], Prime[n], {}], {n, 1, 2000}]]
    Select[Prime[Range[260]],PrimeQ[PartitionsP[Prime[#]]]&] (* Harvey P. Dale, Nov 01 2011 *)

Formula

{ p in {A000040} : A000041(A000040(p)) in {A000040} }.

Extensions

Edited by Alois P. Heinz, Oct 26 2011
a(7)-a(21) from Michael S. Branicky, Sep 30 2023
a(22) and beyond from Michael S. Branicky, Jun 25 2025
Showing 1-3 of 3 results.