cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038604 Primes not containing the digit '2'.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397
Offset: 1

Views

Author

Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998

Keywords

Comments

Subsequence of primes of A052404. - Michel Marcus, Feb 21 2015
Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016

Crossrefs

Subsequence of A065091 (odd primes).
Primes having no digit d = 0..9 are A038618, A038603, this sequence, A038611, A038612, A038613, A038614, A038615, A038616, and A038617, respectively.

Programs

  • Magma
    [ p: p in PrimesUpTo(400) | not 2 in Intseq(p) ]; // Bruno Berselli, Aug 08 2011
    
  • Mathematica
    Select[Prime[Range[70]], DigitCount[#, 10, 2] == 0 &] (* Vincenzo Librandi, Aug 08 2011 *)
  • PARI
    lista(nn, d=2) = {forprime(p=2, nn, if (!vecsearch(vecsort(digits(p),,8), d), print1(p, ", ")););} \\ Michel Marcus, Feb 21 2015
    
  • PARI
    select( {is_A038604(n)=is_A052404(n)&&isprime(n)}, [1..400]) \\ see Wiki for more
    {next_A038604(n)=until((n==nextprime(n+1))==n=next_A052404(n-1),);n} \\ M. F. Hasler, Jan 12 2020
    
  • Python
    from sympy import isprime, nextprime
    def is_A038604(n): return str(n).find('2')<0 and isprime(n)
    def next_A038604(n): # get smallest term > n
        while True:
            n = nextprime(n); s = str(n); t = s.find('2')
            if t < 0: return n
            t = 10**(len(s)-1-t); n += t - n%t
    def A038604_upto(stop=math.inf, start=3):
        while start < stop: yield start; start = next_A038604(start)
    list(A038604_upto(400))
    # M. F. Hasler, Jan 12 2020

Formula

Intersection of A000040 and A052404. - M. F. Hasler, Jan 11 2020
a(n) ≍ n^(log 10/log 9) log n. - Charles R Greathouse IV, Aug 03 2023

Extensions

Offset corrected by Arkadiusz Wesolowski, Aug 07 2011