cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038611 Primes not containing the digit '3'.

Original entry on oeis.org

2, 5, 7, 11, 17, 19, 29, 41, 47, 59, 61, 67, 71, 79, 89, 97, 101, 107, 109, 127, 149, 151, 157, 167, 179, 181, 191, 197, 199, 211, 227, 229, 241, 251, 257, 269, 271, 277, 281, 401, 409, 419, 421, 449, 457, 461, 467, 479, 487, 491, 499, 509, 521, 541, 547, 557
Offset: 1

Views

Author

Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998

Keywords

Comments

Subsequence of primes of A052405. - Michel Marcus, Feb 22 2015
Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016

Crossrefs

Intersection of A000040 (primes) and A052405 (numbers with no digit 3).
Primes having no digit d = 0..9 are A038618, A038603, A038604, this sequence, A038612, A038613, A038614, A038615, A038616, and A038617, respectively.

Programs

  • Magma
    [ p: p in PrimesUpTo(600) | not 3 in Intseq(p) ]; // Bruno Berselli, Aug 08 2011
    
  • Mathematica
    Select[Prime[Range[70]], DigitCount[#, 10, 3] == 0 &] (* Vincenzo Librandi, Aug 08 2011 *)
  • PARI
    lista(nn)=forprime(p=2, nn, if (!vecsearch(vecsort(digits(p),,8), 3), print1(p, ", "));); \\ Michel Marcus, Feb 22 2015
    
  • PARI
    ( {A038611_upto(N,M=1)=select( is_A052405, primes([M,N]))} )(350)
    
  • PARI
    next_A038611(n)={until((n=nextprime(n+1))==n=next_A052405(n-1),);n}
    ( {A038611_vec(n,M=2)=M--;vector(n,i,M=next_A038611(M))} )(20, 1000)
    \\ Get 20 terms >= 1000. See also OEIS wiki page. - M. F. Hasler, Jan 14 2020
    
  • Python
    from sympy import isprime
    i=j=1
    while j<=5000:
        if isprime(i) and "3" not in str(i):
            print(str(j)+" "+str(i))
            j+=1
        i+=1 # Indranil Ghosh, Feb 07 2017

Formula

a(n) ≍ n^(log 10/log 9) log n. - Charles R Greathouse IV, Aug 03 2023

Extensions

Offset corrected by Arkadiusz Wesolowski, Aug 07 2011