cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038612 Primes not containing the digit '4'.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 277, 281, 283, 293
Offset: 1

Views

Author

Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998

Keywords

Comments

Subsequence of primes of A052406. - Michel Marcus, Feb 22 2015
Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016

Crossrefs

Intersection of A000040 (primes) and A052406 (numbers without digit 4).
Primes having no digit d = 0..9 are A038618, A038603, A038604, A038611, this sequence, A038613, A038614, A038615, A038616, and A038617, respectively.

Programs

  • Magma
    [ p: p in PrimesUpTo(300) | not 4 in Intseq(p) ]; // Bruno Berselli, Aug 08 2011
    
  • Mathematica
    Select[Prime[Range[70]], DigitCount[#, 10, 4] == 0 &] (* Vincenzo Librandi, Aug 08 2011 *)
  • PARI
    lista(nn)=forprime(p=2, nn, if (!vecsearch(vecsort(digits(p),,8), 4), print1(p, ", "));); \\ Michel Marcus, Feb 22 2015
    
  • PARI
    ( {A038612_upto(N)=select( is_A052406, primes([1, N]))} )(444) \\ or better:
    next_A038612(n)={until(isprime(n), n=next_A052406(nextprime(n+1)-1)); n}
    ( {A038612_vec(n,M=1)=M--;vector(n,i, n=next_A038612(if(i>1, n)))} )(20, 1000)
    \\ (See the OEIS wiki page for more.) - M. F. Hasler, Jan 12 2020

Formula

a(n) ≍ n^(log 10/log 9) log n. - Charles R Greathouse IV, Aug 03 2023

Extensions

Offset corrected by Arkadiusz Wesolowski, Aug 07 2011