cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038614 Primes not containing the digit '6'.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 271, 277, 281, 283, 293, 307, 311
Offset: 1

Views

Author

Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998

Keywords

Comments

Subsequence of primes of A052414. - Michel Marcus, Feb 22 2015
Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016

Crossrefs

Intersection of A000040 (primes) and A052414 (numbers with no digit 6).
Primes having no digit d = 0..9 are A038618, A038603, A038604, A038611, A038612, A038613, this sequence, A038615, A038616, and A038617, respectively.

Programs

  • Magma
    [ p: p in PrimesUpTo(400) | not 6 in Intseq(p) ]; // Bruno Berselli, Aug 08 2011
    
  • Maple
    no6:= proc(n) option remember;
      n mod 10 <> 6 and procname(floor(n/10))
    end proc:
    no6(0):= true:
    select(no6 and isprime, [2,seq(i,i=3..1000,2)]); # Robert Israel, Mar 16 2017
  • Mathematica
    Select[Prime[Range[70]], DigitCount[#, 10, 6] == 0 &] (* Vincenzo Librandi, Aug 08 2011 *)
  • PARI
    lista(nn)=forprime(p=2, nn, if (!vecsearch(vecsort(digits(p),,8), 6), print1(p, ", "));); \\ Michel Marcus, Feb 22 2015
    
  • PARI
    select( {is_A038614(n)=is_A052414(n)&&isprime(n)}, [1..350]) \\ see A052414
    (A038614_upto(n)=select( is_A038614, primes([1,n])))(350) \\ needs the above
    next_A038614(n)={until(isprime(n), n=next_A052414(nextprime(n+1)-1));n}
    (A038614_vec(n)=vector(n,i,n=next_A038614(if(i>1,n))))(66) \\ M. F. Hasler, Jan 12 2020

Formula

Intersection of A000040 and A052414. - M. F. Hasler, Jan 12 2020
a(n) ≍ n^(log 10/log 9) log n. - Charles R Greathouse IV, Aug 03 2023

Extensions

Offset corrected by Arkadiusz Wesolowski, Aug 07 2011