A038710 a(n) is the smallest prime > product of the first n primes (A002110(n)).
2, 3, 7, 31, 211, 2311, 30047, 510529, 9699713, 223092907, 6469693291, 200560490131, 7420738134871, 304250263527281, 13082761331670077, 614889782588491517, 32589158477190044789, 1922760350154212639131, 117288381359406970983379, 7858321551080267055879179
Offset: 0
Keywords
Examples
for n=1,2,3,4,5,11,75, A002110(n)+1 gives smaller primes than A002110(n)+p, where p is a fortunate number (prime). At n=5, both 2311 and 2333 are primes but the first is smaller.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..350
Programs
-
Maple
p:= proc(n) option remember; `if`(n<1, 1, p(n-1)*ithprime(n)) end: a:= n-> nextprime(p(n)): seq(a(n), n=0..20); # Alois P. Heinz, Mar 16 2020
-
Mathematica
nmax = 2^16384; npd = 1; n = 1; npd = npd*Prime[n]; While[npd < nmax, cp = npd + 1; While[ ! (PrimeQ[cp]), cp = cp + 2]; Print[cp]; n = n + 1; npd = npd*Prime[n]] (* Lei Zhou, Feb 15 2005 *) NextPrime/@FoldList[Times,1,Prime[Range[25]]] (* Harvey P. Dale, Dec 17 2010 *)
-
PARI
a(n) = nextprime(1+factorback(primes(n))); \\ Michel Marcus, Sep 25 2016; Dec 24 2022
-
Python
from sympy import nextprime, primorial def a(n): return nextprime(primorial(n) if n else 1) print([a(n) for n in range(20)]) # Michael S. Branicky, Dec 24 2022
Formula
Extensions
Offset corrected, incorrect comment and formula removed, and more terms added by Jinyuan Wang, Mar 16 2020