cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038737 T(n,n-2), array T as in A038792.

Original entry on oeis.org

1, 6, 23, 73, 211, 581, 1560, 4135, 10890, 28590, 74946, 196326, 514123, 1346148, 3524441, 9227311, 24157645, 63245795, 165579930, 433494205, 1134902916, 2971214796, 7778741748, 20365010748, 53316290821, 139583862066
Offset: 2

Views

Author

Clark Kimberling, May 02 2000

Keywords

Comments

Fifth diagonal of array defined by T(i, 1)=T(1, j)=1, T(i, j)=Max(T(i-1, j)+T(i-1, j-1); T(i-1, j-1)+T(i, j-1)). - Benoit Cloitre, Aug 05 2003

Crossrefs

Apparently the same as A038797, but with offset 2.
Cf. A038792.

Programs

  • Mathematica
    Rest[Rest[CoefficientList[Series[x^2/((1-3*x+x^2)*(1-x)^3), {x, 0, 27}], x]]] (* Georg Fischer, Apr 15 2020 *)
  • Maxima
    a(n):=sum(binomial(n+2,k+3)*fib(k),k,0,n); /* Vladimir Kruchinin, Oct 24 2016 */
    
  • Sage
    [sum(binomial(k+1,2)*fibonacci(2*n-2*k) for k in (0..n)) for n in (2..27)] # Stefano Spezia, Apr 24 2023

Formula

G.f.: x^2/((1-3*x+x^2)*(1-x)^3).
a(n) = Sum_{k=0..n} binomial(n+2,k+3)*Fibonacci(k). - Vladimir Kruchinin, Oct 24 2016
a(n) = Sum_{k=0..n} binomial(k+1,2)*Fibonacci(2*n-2*k). - Greg Dresden and Yu Xiao, Jul 19 2020