A038737 T(n,n-2), array T as in A038792.
1, 6, 23, 73, 211, 581, 1560, 4135, 10890, 28590, 74946, 196326, 514123, 1346148, 3524441, 9227311, 24157645, 63245795, 165579930, 433494205, 1134902916, 2971214796, 7778741748, 20365010748, 53316290821, 139583862066
Offset: 2
Links
- Index entries for linear recurrences with constant coefficients, signature (6,-13,13,-6,1).
Programs
-
Mathematica
Rest[Rest[CoefficientList[Series[x^2/((1-3*x+x^2)*(1-x)^3), {x, 0, 27}], x]]] (* Georg Fischer, Apr 15 2020 *)
-
Maxima
a(n):=sum(binomial(n+2,k+3)*fib(k),k,0,n); /* Vladimir Kruchinin, Oct 24 2016 */
-
Sage
[sum(binomial(k+1,2)*fibonacci(2*n-2*k) for k in (0..n)) for n in (2..27)] # Stefano Spezia, Apr 24 2023
Formula
G.f.: x^2/((1-3*x+x^2)*(1-x)^3).
a(n) = Sum_{k=0..n} binomial(n+2,k+3)*Fibonacci(k). - Vladimir Kruchinin, Oct 24 2016
a(n) = Sum_{k=0..n} binomial(k+1,2)*Fibonacci(2*n-2*k). - Greg Dresden and Yu Xiao, Jul 19 2020
Comments