A038872 Primes congruent to {0, 1, 4} mod 5.
5, 11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 131, 139, 149, 151, 179, 181, 191, 199, 211, 229, 239, 241, 251, 269, 271, 281, 311, 331, 349, 359, 379, 389, 401, 409, 419, 421, 431, 439, 449, 461, 479, 491, 499, 509, 521, 541, 569, 571, 599, 601, 619
Offset: 1
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- C. Banderier, Calcul de (5/p)
- Henri Darmon, Andrew Wiles's Marvelous Proof, Notices of the AMS (2017), Volume 64, Number 3 pp. 209-216. See p. 211.
- Tamara M. Lavshuk, Regular polygons and polyhedra over finite field, Mathematical Notes of NEFU, Vol 22 No 4 (2015). Mentions this sequence.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Programs
-
GAP
Filtered(Concatenation([5],Flat(List([1..140],k->[5*k-1,5*k+1]))),IsPrime); # Muniru A Asiru, Nov 24 2018
-
Magma
[ p: p in PrimesUpTo(700) | p mod 5 in {0,1,4}]; // Vincenzo Librandi, Aug 21 2012
-
Maple
select(isprime, [5, seq(op([5*k-1,5*k+1]),k=1..1000)]); # Robert Israel, Dec 22 2014
-
Mathematica
Join[{5}, Select[Prime[Range[4, 100]], Mod[#, 5] == 1 || Mod[#, 5] == 4 &]] (* Alonso del Arte, Nov 27 2011 *)
-
PARI
forprime(p=2,1e3,if(kronecker(5,p)>=0,print1(p", "))) \\ Charles R Greathouse IV, Jun 16 2011
Formula
a(n) = A045468(n-1) for n > 1. - Robert Israel, Dec 22 2014
a(n) ~ 2n*log(n). - Charles R Greathouse IV, Nov 29 2016
Extensions
Corrected and extended by Peter K. Pearson, May 29 2005
Edited by N. J. A. Sloane, Jul 28 2008 at the suggestion of R. J. Mathar
Comments