cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A019339 Primes with primitive root 11.

Original entry on oeis.org

2, 3, 13, 17, 23, 29, 31, 41, 47, 59, 67, 71, 73, 101, 103, 109, 149, 163, 173, 179, 197, 223, 233, 251, 277, 281, 293, 331, 367, 373, 383, 419, 443, 461, 463, 467, 487, 499, 557, 569, 587, 593, 599, 601, 613, 619, 643, 647, 673, 677, 683, 701, 719, 761, 769, 809, 821
Offset: 1

Views

Author

Keywords

Comments

To allow primes less than the specified primitive root m (here, 11) to be included, we use the essentially equivalent definition "Primes p such that the multiplicative order of m mod p is p-1". This comment applies to all of A019334-A019421. - N. J. A. Sloane, Dec 03 2019
This is a subsequence of A038882. - Klaus Purath, Jul 03 2023

Crossrefs

Cf. A071566.

Programs

  • Mathematica
    pr=11; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &]

A296936 Inert rational primes in the field Q(sqrt(11)).

Original entry on oeis.org

3, 13, 17, 23, 29, 31, 41, 47, 59, 61, 67, 71, 73, 101, 103, 109, 149, 163, 173, 179, 191, 193, 197, 199, 223, 233, 241, 251, 277, 281, 293, 311, 331, 337, 349, 367, 373, 379, 383, 409, 419, 443, 457, 461, 463, 467, 487, 499, 541, 557, 569, 587, 593, 599, 601
Offset: 1

Views

Author

N. J. A. Sloane, Dec 26 2017

Keywords

Crossrefs

Programs

A038881 Odd primes p such that 11 is a square mod p.

Original entry on oeis.org

5, 7, 11, 19, 37, 43, 53, 79, 83, 89, 97, 107, 113, 127, 131, 137, 139, 151, 157, 167, 181, 211, 227, 229, 239, 257, 263, 269, 271, 283, 307, 313, 317, 347, 353, 359, 389, 397, 401, 421, 431, 433, 439, 449, 479, 491, 503, 509, 521, 523, 547, 563, 571, 577
Offset: 1

Views

Author

Keywords

Comments

Also, only entries p=1 (mod 4) of the sequence are squares mod 11 (from the quadratic reciprocity law). - Lekraj Beedassy, Jul 21 2004

Crossrefs

Cf. A038882.

Programs

  • Magma
    [p: p in PrimesInInterval(3,577) | not JacobiSymbol(11,p) eq -1]; // Bruno Berselli, Sep 10 2012
  • Mathematica
    Select[Prime[Range[120]],! JacobiSymbol[11, #]== -1 &] (* Vincenzo Librandi, Sep 10 2012 *)
  • PARI
    forprime(p=2,1000,if(kronecker(11,p)==+1,print1(p,", "))) /* Joerg Arndt, Apr 24 2011 */
    

Extensions

Added "odd" to definition (otherwise 2 would be a term). - N. J. A. Sloane, Jul 04 2023

A296935 Rational primes that decompose in the field Q(sqrt(11)).

Original entry on oeis.org

5, 7, 19, 37, 43, 53, 79, 83, 89, 97, 107, 113, 127, 131, 137, 139, 151, 157, 167, 181, 211, 227, 229, 239, 257, 263, 269, 271, 283, 307, 313, 317, 347, 353, 359, 389, 397, 401, 421, 431, 433, 439, 449, 479, 491, 503, 509, 521, 523, 547, 563, 571, 577, 607
Offset: 1

Views

Author

N. J. A. Sloane, Dec 26 2017

Keywords

Crossrefs

Programs

  • Maple
    Load the Maple program HH given in A296920. Then run HH(11, 200); This produces A296935, A296936, A038881, A038882.
  • Mathematica
    Select[Prime[Range[120]], KroneckerSymbol[11, #] == 1 &] (* Amiram Eldar, Dec 24 2023 *)
  • PARI
    list(lim)=my(v=List()); forprime(p=5,lim, if(kronecker(11,p)==1, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Mar 18 2018
Showing 1-4 of 4 results.