cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A035212 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 30.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 0, 0, 1, 1, 2, 1, 2, 2, 1, 0, 1, 0, 2, 2, 1, 2, 2, 2, 1, 0, 2, 0, 0, 1, 0, 0, 1, 3, 1, 2, 2, 0, 1, 0, 2, 2, 2, 0, 1, 0, 0, 2, 1, 2, 0, 0, 2, 0, 2, 2, 1, 0, 2, 1, 2, 0, 2, 0, 1, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[30, #] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2023 *)
  • PARI
    my(m = 30); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(30, d)); \\ Amiram Eldar, Nov 19 2023

Formula

From Amiram Eldar, Nov 19 2023: (Start)
a(n) = Sum_{d|n} Kronecker(30, d).
Multiplicative with a(p^e) = 1 if Kronecker(30, p) = 0 (p = 2, 3 or 5), a(p^e) = (1+(-1)^e)/2 if Kronecker(30, p) = -1 (p is in A038904), and a(p^e) = e+1 if Kronecker(30, p) = 1 (p is in A097959).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(2*sqrt(30)+11)/sqrt(30) = 1.127932330891... . (End)

A097959 Primes p such that p divides 6^((p-1)/2) - 5^((p-1)/2).

Original entry on oeis.org

7, 13, 17, 19, 29, 37, 71, 83, 101, 103, 107, 113, 127, 137, 139, 149, 157, 191, 211, 223, 227, 233, 239, 241, 257, 269, 277, 311, 331, 347, 353, 359, 367, 373, 379, 389, 397, 409, 431, 443, 461, 463, 467, 479, 487, 499, 509, 563, 571, 587, 593, 599, 601, 607
Offset: 1

Views

Author

Cino Hilliard, Sep 06 2004

Keywords

Comments

From Jianing Song, Oct 13 2022: (Start)
Rational primes that decompose in the field Q(sqrt(30)).
Primes p such that kronecker(30,p) = 1 (or equivalently, kronecker(120,p) = 1).
Primes congruent to 1, 7, 13, 17, 19, 29, 37, 49, 71, 83, 91, 101, 103, 107, 113, 119 modulo 120. (End)

Examples

			7 is a term since it is a prime and 6^((7-1)/2) - 5^((7-1)/2) = 6^3 - 5^3 = 91 = 7*13 is divisible by 7.
		

Crossrefs

A038903, the sequence of primes that do not remain inert in the field Q(sqrt(30)), is essentially the same.
Cf. A038904 (rational primes that remain inert in the field Q(sqrt(30))).

Programs

  • Mathematica
    Select[Prime[Range[200]],Divisible[6^((#-1)/2)-5^((#-1)/2),#]&] (* Harvey P. Dale, Jun 06 2018 *)
    Select[Range[3, 600, 2], PrimeQ[#] && PowerMod[5, (# - 1)/2, #] == PowerMod[6, (# - 1)/2, #] &] (* Amiram Eldar, Apr 07 2021 *)
  • PARI
    \\ s = +-1, d=diff
    ptopm1d2(n,x,d,s) = { forprime(p=3,n,p2=(p-1)/2; y=x^p2 + s*(x-d)^p2; if(y%p==0, print1(p","))) }
    ptopm1d2(1000, 6, 1, -1)
    
  • PARI
    isA097959(p) == isprime(p) && kronecker(30, p) == 1 \\ Jianing Song, Oct 13 2022

Extensions

Definition clarified by Harvey P. Dale, Jun 06 2018

A347815 Prime numbers p such that both 30 and 105 are quadratic nonresidue (mod p).

Original entry on oeis.org

11, 31, 43, 47, 61, 67, 163, 167, 173, 179, 181, 193, 199, 229, 271, 281, 293, 337, 349, 383, 401, 439, 449, 457, 491, 503, 547, 569, 641, 647, 659, 661, 673, 677, 773, 797, 809, 829, 883, 887, 907, 983, 1013, 1019, 1021, 1033, 1039, 1069, 1223, 1231
Offset: 1

Views

Author

Sela Fried, Sep 15 2021

Keywords

Comments

Primes p such that the Eulerian polynomial E_5(x) is irreducible (mod p), where E_5(x) = x^4 + 26x^3 + 66x^2 + 26x + 1.
The sequence is infinite.

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range[205], JacobiSymbol[30, #] == -1 && JacobiSymbol[105,#]==-1 &] (* Stefano Spezia, Sep 16 2021 *)
  • PARI
    isok(p) = isprime(p) && (kronecker(30, p)==-1) && (kronecker(105, p)==-1); \\ Michel Marcus, Sep 16 2021
    
  • Python
    from sympy.ntheory import legendre_symbol, primerange
    A347815_list = [p for p in primerange(3,10**5) if legendre_symbol(30,p) == legendre_symbol(105,p) == -1] # Chai Wah Wu, Sep 16 2021
Showing 1-3 of 3 results.