A039596 Numbers that are simultaneously triangular and square pyramidal.
0, 1, 55, 91, 208335
Offset: 1
Examples
1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1 + 2 + 3 + ... + 10 = 55, so 55 is in the sequence.
References
- Joe Roberts, Lure of the Integers, page 245 (entry for 645).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, p. 108.
Links
- R. Finkelstein and H. London, On triangular numbers which are sums of consecutive squares, J. Number Theory 4 (1972), 455-462.
- M. Gardner, Letter to N. J. A. Sloane, circa Aug 11 1980, concerning A001110, A027568, A039596, etc.
- H. E. Thomas Jr., Problem 5634, Amer. Math. Monthly, 75 (1968), p. 1018.
Programs
-
Maple
q:= n-> issqr(8*n+1): select(q, [sum(j^2, j=1..n)$n=0..100])[]; # Alois P. Heinz, Oct 17 2024
Extensions
Additional comments from Jud McCranie, Mar 19 2000
Zero inserted by Daniel Mondot, Sep 07 2023
Comments