cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A039686 Squares which are the concatenation of two nonzero squares.

Original entry on oeis.org

49, 169, 361, 1225, 1444, 1681, 3249, 4225, 4900, 15625, 16900, 36100, 42025, 49729, 64009, 81225, 93025, 122500, 144400, 168100, 225625, 237169, 324900, 422500, 490000, 519841, 819025, 950625, 970225, 1024144, 1442401, 1562500
Offset: 1

Views

Author

Keywords

Comments

Intersection of A191933 and A000290; A193095(a(n))>0 and A010052(a(n))=1. - Reinhard Zumkeller, Jul 17 2011
Note that "leading zeros" are not allowed, e.g., 9025 = 95^2 is not in the sequence although it is the concatenation of 9 = 3^2 and 025 = 5^2. - M. F. Hasler, Jan 25 2016

Examples

			1225=35^2, 225=15^2, 1=1^2.
		

References

  • D. Wells, Curious and interesting numbers, Penguin Books, p. 152.

Crossrefs

Cf. A048375.

Programs

  • Haskell
    a039686 n = a039686_list !! (n-1)
    a039686_list = filter ((== 1) . a010052) a191933_list
    -- Reinhard Zumkeller, Jul 17 2011
    
  • Mathematica
    t = Table[n^2, {n, 750}]; f[j_, k_] := Block[{n = j*10^Floor[1 + Log10@ k] + k}, If[IntegerQ@ Sqrt@ n, n, 0]]; Take[ Union@ Flatten@ Table[ f[t[[j]], t[[k]]], {j, 250}, {k, 750}], {2, 33}] (* Robert G. Wilson v, Jul 18 2011 *)
    squareQ[n_] := IntegerQ[Sqrt[n]]; okQ[n_] := MatchQ[IntegerDigits[n], {a__ /; squareQ[FromDigits[{a}]], b__ /; First[{b}] > 0 && squareQ[FromDigits[ {b}]]}]; Select[Range[2000]^2, okQ] (* Jean-François Alcover, Dec 13 2016 *)
  • PARI
    is_A039686(n)={my(p=10);until(n<=p*=10,issquare(n%p)&&issquare(n\p)&&n%p*10>=p&&issquare(n)&&return(n>10))} \\ We must check whether n is a square but in practice this will be sure a priori (cf below) so we put this test at the end. The same applies for "n>10". - M. F. Hasler, Jan 25 2016
    
  • PARI
    {for(m=4,999, is_A039686(m^2)&&print1(m^2,","))} \\ Here the final checks issquare(n) & n>10 in the above function are superfluous, but they will only be done in the ("few") positive cases. - M. F. Hasler, Jan 25 2016

Formula

a(n) = A048375(n)^2. - M. F. Hasler, Jan 25 2016

Extensions

More terms from Patrick De Geest, March 1999