cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A005231 Odd abundant numbers (odd numbers m whose sum of divisors exceeds 2m).

Original entry on oeis.org

945, 1575, 2205, 2835, 3465, 4095, 4725, 5355, 5775, 5985, 6435, 6615, 6825, 7245, 7425, 7875, 8085, 8415, 8505, 8925, 9135, 9555, 9765, 10395, 11025, 11655, 12285, 12705, 12915, 13545, 14175, 14805, 15015, 15435, 16065, 16695, 17325, 17955
Offset: 1

Views

Author

Keywords

Comments

While the first even abundant number is 12 = 2^2*3, the first odd abundant is 945 = 3^3*5*7, the 232nd abundant number.
Schiffman notes that 945+630k is in this sequence for all k < 52. Most of the first initial terms are of the form. Among the 1996 terms below 10^6, 1164 terms are of that form, and only 26 terms are not divisible by 5, cf. A064001. - M. F. Hasler, Jul 16 2016
From M. F. Hasler, Jul 28 2016: (Start)
Any multiple of an abundant number is again abundant, see A006038 for primitive terms, i.e., those which are not a multiple of an earlier term.
An odd abundant number must have at least 3 distinct prime factors, and 5 prime factors when counted with multiplicity (A001222), whence a(1) = 3^3*5*7. To see this, write the relative abundancy A(N) = sigma(N)/N = sigma[-1](N) as A(Product p_i^e_i) = Product (p_i-1/p_i^e_i)/(p_i-1) < Product p_i/(p_i-1).
See A115414 for terms not divisible by 3, A064001 for terms not divisible by 5, A112640 for terms coprime to 5*7, and A047802 for other generalizations.
As of today, we don't know of a difference between this set S of odd abundant numbers and the set S' of odd semiperfect numbers: Elements of S' \ S would be perfect (A000396), and elements of S \ S' would be weird (A006037), but no odd weird or perfect number is known. (End)
For any term m in this sequence, A064989(m) is also an abundant number (in A005101), and for any term x in A115414, A064989(x) is in this sequence. If there are no odd perfect numbers, then applying A064989 to these terms and sorting into ascending order gives A337386. - Antti Karttunen, Aug 28 2020
There exist infinitely many terms m such that 2*m+1 is also a term. An example of such a term is given by m = 985571808130707987847768908867571007187. - Max Alekseyev, Nov 16 2023

References

  • W. Dunham, Euler: The Master of Us All, The Mathematical Association of America Inc., Washington, D.C., 1999, p. 13.
  • R. K. Guy, Unsolved Problems in Number Theory, B2.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 128.

Crossrefs

Programs

  • Maple
    A005231 := proc(n) option remember ; local a ; if n = 1 then 945 ; else for a from procname(n-1)+2 by 2 do if numtheory[sigma](a) > 2*a then return a; end if; end do: end if; end proc: # R. J. Mathar, Mar 20 2011
  • Mathematica
    fQ[n_] := DivisorSigma[1, n] > 2n; Select[1 + 2Range@ 9000, fQ] (* Robert G. Wilson v, Mar 20 2011 *)
  • PARI
    je=[]; forstep(n=1,15000,2, if(sigma(n)>2*n, je=concat(je,n))); je
    
  • PARI
    is_A005231(n)={bittest(n,0)&&sigma(n)>2*n} \\ M. F. Hasler, Jul 28 2016
    
  • PARI
    list(lim)=my(v=List()); forfactored(n=945,lim\1, if(n[2][1,1]>2 && sigma(n,-1)>2, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Apr 21 2022

Formula

a(n) ~ k*n for some constant k (perhaps around 500). - Charles R Greathouse IV, Apr 21 2022
482.8 < k < 489.8 (based on density bounds by Kobayashi et al., 2009). - Amiram Eldar, Jul 17 2022

Extensions

More terms from James Sellers

A173490 Even abundant numbers (even numbers n whose sum of divisors exceeds 2n).

Original entry on oeis.org

12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240
Offset: 1

Views

Author

Daniel Forgues, Nov 22 2010

Keywords

Comments

Set difference of abundant numbers A005101 by odd abundant numbers A005231.
While the first even abundant number is 12 = 2^2*3, the first odd abundant is 945 = 3^3*5*7, the 232nd abundant number! Thus the first 231 terms of this sequence are the same as for sequence A005101 of abundant numbers.
Dickson proves that, for each m and n, there are only a finite number of these numbers having a factor 2^m and n distinct odd prime factors. - T. D. Noe, Mar 31 2011
The asymptotic density of this sequence is in the interval (0.245548, 0.245578) (based on the known bounds on the densities of A005101 and A005231; see A302991 and A322287). - Amiram Eldar, Mar 11 2024

Crossrefs

Programs

  • Mathematica
    Select[2*Range[150], DivisorSigma[1, #] > 2 # &] (* T. D. Noe, Jun 25 2012 *)
  • PARI
    is(n)=n%2==0 && sigma(n,-1)>2 \\ Charles R Greathouse IV, Feb 21 2017

Formula

a(n) = 2 * A039725(n). - Amiram Eldar, Mar 11 2024
Showing 1-2 of 2 results.