A039755 Triangle of B-analogs of Stirling numbers of the second kind.
1, 1, 1, 1, 4, 1, 1, 13, 9, 1, 1, 40, 58, 16, 1, 1, 121, 330, 170, 25, 1, 1, 364, 1771, 1520, 395, 36, 1, 1, 1093, 9219, 12411, 5075, 791, 49, 1, 1, 3280, 47188, 96096, 58086, 13776, 1428, 64, 1, 1, 9841, 239220, 719860, 618870, 209622, 32340, 2388, 81, 1, 1
Offset: 0
Examples
Triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 1 1 2: 1 4 1 3: 1 13 9 1 4: 1 40 58 16 1 5: 1 121 330 170 25 1 6: 1 364 1771 1520 395 36 1 7: 1 1093 9219 12411 5075 791 49 1 8: 1 3280 47188 96096 58086 13776 1428 64 1 9: 1 9841 239220 719860 618870 209622 32340 2388 81 1 10: 1 29524 1205941 5278240 6289690 2924712 630042 68160 3765 100 1 ... reformatted and extended by _Wolfdieter Lang_, May 26 2017 The sequence of row polynomials of A214406 begins [1, 1+x, 1+8*x+3*x^2, ...]. The o.g.f.'s for the diagonals of this triangle thus begin 1/(1-x) = 1 + x + x^2 + x^3 + ... (1+x)/(1-x)^3 = 1 + 4*x + 9*x^2 + 16*x^3 + ... (1+8*x+3*x^2)/(1-x)^5 = 1 + 13*x + 58*x^2 + 170*x^3 + ... . - _Peter Bala_, Jul 20 2012 Connection constants: x^3 = 1 + 13*(x-1) + 9*(x-1)*(x-3) + (x-1)*(x-3)*(x-5). Hence row 3 = [1,13,9,1]. - _Peter Bala_, Jun 23 2014 Complete homogeneous symmetric functions: T(3, 1) = h^{(2)}_2 = 1^2 + 3^2 + 1^1*3^1 = 13. The three 2D polytopes are two squares and a rectangle. T(3, 2) = h^{(3)}_1 = 1^1 + 3^1 + 5^1 = 9. The 1D polytopes are three lines. - _Wolfdieter Lang_, May 26 2017 T(4, 3) = 16 is the number of 3-dimensional subspaces (mirror hyperplanes) of the 4-cube. (These are 4 cubes and 12 cuboids.) See "Sets of fixed points..." in LINKS section. - _Tilman Piesk_, Oct 26 2019
Links
- G. C. Greubel, Rows = 0..100 of triangle, flattened
- V. E. Adler, Set partitions and integrable hierarchies, arXiv:1510.02900 [nlin.SI], 2015.
- Alnour Altoum, Hasan Arslan, and Mariam Zaarour, Cauchy numbers in type B, arXiv:2312.14652 [math.CO], 2023.
- Hasan Arslan, Nazmiye Alemdar, Mariam Zaarour, and Hüseyin Altındiş, On Bell numbers of type D, arXiv:2504.16522 [math.CO], 2025. See p. 3.
- Eli Bagno, Riccardo Biagioli and David Garber, Some identities involving second kind Stirling numbers of types B and D, arXiv:1901.07830 [math.CO], 2019.
- Peter Bala, Generalized Dobinski formulas
- Paul Barry, A Note on Three Families of Orthogonal Polynomials defined by Circular Functions, and Their Moment Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.7.2.
- Sandrine Dasse-Hartaut and Pawel Hitczenko, Greek letters in random staircase tableaux arXiv:1202.3092v1 [math.CO], 2012.
- I. Dolgachev and V. Lunts, A character formula for the representation of the Weyl group in the cohomology of the associated toric variety Journal of Algebra, 168, 741-772, (1994).
- Thomas Godland and Zakhar Kabluchko, Projections and angle sums of permutohedra and other polytopes, arXiv:2009.04186 [math.MG], 2020.
- Thomas Godland and Zakhar Kabluchko, Projections and Angle Sums of Belt Polytopes and Permutohedra, Res. Math. (2023) Vol. 78, Art. No. 140.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See pp. 8-9.
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers, arXiv:1707.04451 [math.NT], 2017.
- L. Liu and Y. Wang, A unified approach to polynomial sequences with only real zeros, arXiv:math/0509207v5 [math.CO], 2005-2006.
- Shi-Mei Ma, T. Mansour, and D. Callan, Some combinatorial arrays related to the Lotka-Volterra system, arXiv:1404.0731 [math.CO], 2014.
- E. Munarini, Characteristic, admittance and matching polynomials of an antiregular graph, Appl. Anal. Discrete Math 3 (1) (2009) 157-176.
- Tillmann Nett, Nadine Nett and Andreas Glöckner, Bayesian Analysis of Processed Information in Decision Making Experiments, FernUniversität (Hagen, Germany), University of Cologne (Germany, 2019).
- Tilman Piesk, Sets of fixed points of permutations of the n-cube: n = 3 and 4.
- Bruce E. Sagan and Joshua P. Swanson, q-Stirling numbers in type B, arXiv:2205.14078 [math.CO], 2022.
- Ruedi Suter, Two analogues of a classical sequence, J. Integer Sequences, Vol. 3 (2000), #P00.1.8.
- D. G. L. Wang, The Limiting Distribution of the Number of Block Pairs in Type B Set Partitions, arXiv:1108.1264 [math.CO], 2011.
Programs
-
Magma
[[(&+[(-1)^(k-j)*(2*j+1)^n*Binomial(k, j): j in [0..k]])/( 2^k*Factorial(k)): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 14 2019
-
Maple
A039755 := proc(n,k) if k < 0 or k > n then 0 ; elif n <= 1 then 1; else procname(n-1,k-1)+(2*k+1)*procname(n-1,k) ; end if; end proc: seq(seq(A039755(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Oct 30 2009
-
Mathematica
t[n_, k_] = Sum[(-1)^(k-j)*(2j+1)^n*Binomial[k, j], {j, 0, k}]/(2^k*k!); Flatten[Table[t[n, k], {n, 0, 10}, {k, 0, n}]][[1 ;; 56]] (* Jean-François Alcover, Jun 09 2011, after Peter Bala *)
-
PARI
T(n,k)=if(k<0 || k>n,0,n!*polcoeff(polcoeff(exp(x+y/2*(exp(2*x+x*O(x^n))-1)),n),k))
-
Sage
[[sum((-1)^(k-j)*(2*j+1)^n*binomial(k, j) for j in (0..k))/( 2^k*factorial(k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 14 2019
Formula
E.g.f. row polynomials: exp(x + y/2 * (exp(2*x) - 1)).
T(n,k) = T(n-1,k-1) + (2*k+1)*T(n-1,k) with T(0,k) = 1 if k=0 and 0 otherwise. Sum_{k=0..n} T(n,k) = A007405(n). - R. J. Mathar, Oct 30 2009; corrected by Joshua Swanson, Feb 14 2019
T(n,k) = (1/(2^k*k!)) * Sum_{j=0..k} (-1)^(k-j)*C(k,j)*(2*j+1)^n.
T(n,k) = (1/(2^k*k!)) * A145901(n,k). - Peter Bala
The row polynomials R(n,x) satisfy the Dobinski-type identity:
R(n,x) = exp(-x/2)*Sum_{k >= 0} (2*k+1)^n*(x/2)^k/k!, as well as the recurrence equation R(n+1,x) = (1+x)*R(n,x)+2*x*R'(n,x). The polynomial R(n,x) has all real zeros (apply [Liu et al., Theorem 1.1] with f(x) = R(n,x) and g(x) = R'(n,x)). The polynomials R(n,2*x) are the row polynomials of A154537. - Peter Bala, Oct 28 2011
Let f(x) = exp((1/2)*exp(2*x)+x). Then the row polynomials R(n,x) are given by R(n,exp(2*x)) = (1/f(x))*(d/dx)^n(f(x)). Similar formulas hold for A008277, A105794, A111577, A143494 and A154537. - Peter Bala, Mar 01 2012
From Peter Bala, Jul 20 2012: (Start)
The o.g.f. for the n-th diagonal (with interpolated zeros) is the rational function D^n(x), where D is the operator x/(1-x^2)*d/dx. For example, D^3(x) = x*(1+8*x^2+3*x^4)/(1-x^2)^5 = x + 13*x^3 + 58*x^5 + 170*x^7 + ... . See A214406 for further details.
An alternative formula for the o.g.f. of the n-th diagonal is exp(-x/2)*(Sum_{k >= 0} (2*k+1)^(k+n-1)*(x/2*exp(-x))^k/k!).
(End)
From Tom Copeland, Dec 31 2015: (Start)
T(n,m) = Sum_{i=0..n-m} 2^(n-m-i)*binomial(n,i)*St2(n-i,m), where St2(n,k) are the Stirling numbers of the second kind, A048993 (also A008277). See p. 755 of Dolgachev and Lunts.
The relation of this entry's e.g.f. above to that of the Bell polynomials, Bell_n(y), of A048993 establishes this formula from a binomial transform of the normalized Bell polynomials, NB_n(y) = 2^n Bell_n(y/2); that is, e^x exp[(y/2)(e^(2x)-1)] = e^x exp[x*2*Bell.(y/2)] = exp[x(1+NB.(y))] = exp(x*P.(y)), so the row polynomials of this entry are given by P_n(y) = [1+NB.(y)]^n = Sum_{k=0..n} C(n,k) NB_k(y) = Sum_{k=0..n} 2^k C(n,k) Bell_k(y/2).
The umbral compositional inverses of the Bell polynomials are the falling factorials Fct_n(y) = y! / (y-n)!; i.e., Bell_n(Fct.(y)) = y^n = Fct_n(Bell.(y)). Since P_n(y) = [1+2Bell.(y/2)]^n, the umbral inverses are determined by [1 + 2 Bell.[ 2 Fct.[(y-1)/2] / 2 ] ]^n = [1 + 2 Bell.[ Fct.[(y-1)/2] ] ]^n = [1+y-1]^n = y^n. Therefore, the umbral inverse sequence of this entry's row polynomials is the sequence IP_n( y) = 2^n Fct_n[(y-1)/2] = (y-1)(y-3) .. (y-2n+1) with IP_0(y) = 1 and, from the binomial theorem, with e.g.f. exp[x IP.(y)]= exp[ x 2Fct.[(y-1)/2] ] = (1+2x)^[(y-1)/2] = exp[ [(y-1)/2] log(1+2x) ].
(End)
Let B(n,k) = T(n,k)*((2*k)!)/(2^k*k!) and P(n,x) = Sum_{k=0..n} B(n,k)*x^(2*k+1). Then (1) P(n+1,x) = (x+x^3)*P'(n,x) for n >= 0, and (2) Sum_{n>=0} B(n,k)/(n!)*t^n = binomial(2*k,k)*exp(t)*(exp(2*t)-1)^k/4^k for k >= 0, and (3) Sum_{n>=0} t^n* P(n,x)/(n!) = x*exp(t)/sqrt(1+x^2-x^2*exp(2*t)). - Werner Schulte, Dec 12 2016
From Wolfdieter Lang, May 26 2017: (Start)
G.f. column k: x^k/Product_{j=0..k} (1 - (1+2*j)*x), k >= 0.
T(n, k) = h^{(k+1)}_{n-k}, the complete homogeneous symmetric function of degree n-k of the k+1 symbols a_j = 1 + 2*j, j = 0, 1, ..., k. (End)
With p(n, x) = Sum_{k=0..n} A001147(k) * T(n, k) * x^k for n >= 0 holds:
(1) Sum_{i=0..n} p(i, x)*p(n-i, x) = 2^n*(Sum_{k=0..n} A028246(n+1, k+1)*x^k);
(2) p(n, -1/2) = (n!) * ([t^n] sqrt(2 / (1 + exp(-2*t)))). - Werner Schulte, Feb 16 2024
Comments