cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A039760 Triangle of D-analogs of Stirling numbers of the 2nd kind.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 1, 7, 6, 1, 1, 24, 34, 12, 1, 1, 81, 190, 110, 20, 1, 1, 268, 1051, 920, 275, 30, 1, 1, 869, 5747, 7371, 3255, 581, 42, 1, 1, 2768, 31060, 57568, 35686, 9296, 1092, 56, 1, 1, 8689, 166068, 441652, 373926, 134022, 22764, 1884, 72, 1
Offset: 0

Views

Author

Ruedi Suter (suter(AT)math.ethz.ch)

Keywords

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k=0..n) begins:
  1;
  0,   1;
  1,   2,    1;
  1,   7,    6,   1;
  1,  24,   34,  12,   1;
  1,  81,  190, 110,  20,  1;
  1, 268, 1051, 920, 275, 30, 1;
  ...
		

Crossrefs

Cf. A039761 (transposed triangle).

Programs

  • Mathematica
    With[{m = 10}, CoefficientList[CoefficientList[Series[(Exp[x]-x)* Exp[y/2*(Exp[2*x]-1)], {y, 0, m}, {x, 0, m}], x], y]*(Range[0, m]!)] (* G. C. Greubel, Mar 07 2019 *)
  • PARI
    T(n, k)=if(k<0||k>n, 0, n!*polcoeff(polcoeff((exp(x)-x)*exp(y/2*(exp(2*x)-1)), n), k));
    tabl(nn) = {x = 'x + O('x^nn); for (n=0, nn, for (m=0, n, print1(T(n, m), ", ");); print(););} \\ Michel Marcus, May 03 2015

Formula

Bivariate e.g.f.-o.g.f.: (exp(x) - x)*exp(y/2*(exp(2*x) - 1)). [See Theorem 4 in Suter (2000).]
T(n,k) = Sum_{j=k..n} 2^(j-k)*binomial(n,j)*Stirling2(j,k) - 2^(n-1-k)*n*Stirling2(n-1,k). [See Proposition 3 in Suter (2000).] - Petros Hadjicostas, Jul 11 2020