cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A039761 Triangle of D-analogs of Stirling numbers of the 2nd kind.

Original entry on oeis.org

1, 1, 0, 1, 2, 1, 1, 6, 7, 1, 1, 12, 34, 24, 1, 1, 20, 110, 190, 81, 1, 1, 30, 275, 920, 1051, 268, 1, 1, 42, 581, 3255, 7371, 5747, 869, 1, 1, 56, 1092, 9296, 35686, 57568, 31060, 2768, 1, 1, 72, 1884, 22764, 134022, 373926, 441652, 166068, 8689, 1, 1, 90, 3045, 49680, 418362, 1812552, 3803290, 3342240, 879541, 26964, 1
Offset: 0

Views

Author

Ruedi Suter (suter(AT)math.ethz.ch)

Keywords

Comments

Since T(n,k) = A039760(n,n-k), we have Sum_{n,k >= 0} T(n,k)*(x^n/n!)*y^k = Sum_{n,k >= 0} A039760(n,n-k)*((x*y)^n/n!)*(1/y)^(n-k) = Sum_{n,m >= 0} A039760(n,m)*((x*y)^n/n!)*(1/y)^m. Thus, to get the bivariate e.g.f.-o.g.f. of T(n,k), we perform the following transformation in the bivariate e.g.f.-o.g.f. of A039760: (x,y) -> (x*y, 1/y). - Petros Hadjicostas, Jul 11 2020

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  1,  0;
  1,  2,   1;
  1,  6,   7,   1;
  1, 12,  34,  24,    1;
  1, 20, 110, 190,   81,   1;
  1, 30, 275, 920, 1051, 268, 1;
  ...
		

Crossrefs

Cf. A039760 (transposed triangle).

Formula

Bivariate e.g.f.-o.g.f.: (exp(x*y) - x*y) * exp(1/(2*y)*(exp(2*x*y) - 1)). [Apply (x, y) -> (x*y, 1/y) to (exp(x) - x)*exp(y/2*(exp(2*x) - 1)). - Petros Hadjicostas, Jul 11 2020]
T(n,k) = (Sum_{j=n-k..n} 2^(j+k-n)*binomial(n,j)*Stirling2(j, n-k)) - 2^(k-1)*n*Stirling2(n-1, n-k). [Use Proposition 3 in Suter (2000) with k -> n-k.] - Petros Hadjicostas, Jul 11 2020

Extensions

More terms from Petros Hadjicostas, Jul 12 2020

A039764 D-analogs of Bell numbers.

Original entry on oeis.org

1, 1, 4, 15, 72, 403, 2546, 17867, 137528, 1149079, 10335766, 99425087, 1017259964, 11018905667, 125860969266, 1510764243699, 18999827156304, 249687992188015, 3420706820299374, 48751337014396167
Offset: 0

Views

Author

Ruedi Suter (suter(AT)math.ethz.ch)

Keywords

Crossrefs

B-analogs of Bell numbers = A007405.

Programs

  • Mathematica
    Range[0, 25]! CoefficientList[Series[(Exp[x] - x) Exp[1/2 (Exp[2 x] - 1)], {x, 0, 25}], x] (* Vincenzo Librandi, May 03 2015 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace((exp(x) - x)*exp(1/2*(exp(2*x) - 1)))) \\ Michel Marcus, May 03 2015

Formula

E.g.f.: (exp(x) - x)*exp(1/2*(exp(2*x) - 1)).
a(n) = Sum_{k=0..n} A039760(n, k).
Showing 1-2 of 2 results.