A306914
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1-x)^k+x^k).
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 3, 2, 0, 1, 4, 6, 0, 0, 1, 5, 10, 9, -4, 0, 1, 6, 15, 20, 9, -8, 0, 1, 7, 21, 35, 34, 0, -8, 0, 1, 8, 28, 56, 70, 48, -27, 0, 0, 1, 9, 36, 84, 126, 125, 48, -81, 16, 0, 1, 10, 45, 120, 210, 252, 200, 0, -162, 32, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 3, 4, 5, 6, 7, 8, ...
0, 2, 6, 10, 15, 21, 28, 36, ...
0, 0, 9, 20, 35, 56, 84, 120, ...
0, -4, 9, 34, 70, 126, 210, 330, ...
0, -8, 0, 48, 125, 252, 462, 792, ...
0, -8, -27, 48, 200, 461, 924, 1716, ...
0, 0, -81, 0, 275, 780, 1715, 3432, ...
0, 16, -162, -164, 275, 1209, 2989, 6434, ...
-
A[n_, k_] := SeriesCoefficient[1/((1-x)^k + x^k), {x, 0, n}];
Table[A[n-k+1, k], {n, 0, 11}, {k, n+1, 1, -1}] // Flatten (* Jean-François Alcover, Mar 20 2019 *)
A306915
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1-x)^k-x^k).
Original entry on oeis.org
1, 1, 2, 1, 2, 4, 1, 3, 4, 8, 1, 4, 6, 8, 16, 1, 5, 10, 11, 16, 32, 1, 6, 15, 20, 21, 32, 64, 1, 7, 21, 35, 36, 42, 64, 128, 1, 8, 28, 56, 70, 64, 85, 128, 256, 1, 9, 36, 84, 126, 127, 120, 171, 256, 512, 1, 10, 45, 120, 210, 252, 220, 240, 342, 512, 1024
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
2, 2, 3, 4, 5, 6, 7, 8, ...
4, 4, 6, 10, 15, 21, 28, 36, ...
8, 8, 11, 20, 35, 56, 84, 120, ...
16, 16, 21, 36, 70, 126, 210, 330, ...
32, 32, 42, 64, 127, 252, 462, 792, ...
64, 64, 85, 120, 220, 463, 924, 1716, ...
128, 128, 171, 240, 385, 804, 1717, 3432, ...
256, 256, 342, 496, 715, 1365, 3017, 6436, ...
-
A[n_, k_] := Sum[Binomial[n + k - 1, k*j + k - 1], {j, 0, Floor[n/k]}]; Table[A[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 25 2021 *)
A307047
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1+x)^k-x^k).
Original entry on oeis.org
1, 1, 0, 1, -2, 0, 1, -3, 4, 0, 1, -4, 6, -8, 0, 1, -5, 10, -9, 16, 0, 1, -6, 15, -20, 9, -32, 0, 1, -7, 21, -35, 36, 0, 64, 0, 1, -8, 28, -56, 70, -64, -27, -128, 0, 1, -9, 36, -84, 126, -125, 120, 81, 256, 0, 1, -10, 45, -120, 210, -252, 200, -240, -162, -512, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, -2, -3, -4, -5, -6, -7, -8, ...
0, 4, 6, 10, 15, 21, 28, 36, ...
0, -8, -9, -20, -35, -56, -84, -120, ...
0, 16, 9, 36, 70, 126, 210, 330, ...
0, -32, 0, -64, -125, -252, -462, -792, ...
0, 64, -27, 120, 200, 463, 924, 1716, ...
0, -128, 81, -240, -275, -804, -1715, -3432, ...
0, 256, -162, 496, 275, 1365, 2989, 6436, ...
-
T[n_, k_] := (-1)^n * Sum[(-1)^(j * Mod[k, 2]) * Binomial[n + k - 1, k*j + k - 1], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)
A306913
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1+x)^k+x^k).
Original entry on oeis.org
1, 1, -2, 1, -2, 4, 1, -3, 2, -8, 1, -4, 6, 0, 16, 1, -5, 10, -11, -4, -32, 1, -6, 15, -20, 21, 8, 64, 1, -7, 21, -35, 34, -42, -8, -128, 1, -8, 28, -56, 70, -48, 85, 0, 256, 1, -9, 36, -84, 126, -127, 48, -171, 16, -512, 1, -10, 45, -120, 210, -252, 220, 0, 342, -32, 1024
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
-2, -2, -3, -4, -5, -6, -7, -8, ...
4, 2, 6, 10, 15, 21, 28, 36, ...
-8, 0, -11, -20, -35, -56, -84, -120, ...
16, -4, 21, 34, 70, 126, 210, 330, ...
-32, 8, -42, -48, -127, -252, -462, -792, ...
64, -8, 85, 48, 220, 461, 924, 1716, ...
-128, 0, -171, 0, -385, -780, -1717, -3432, ...
256, 16, 342, -164, 715, 1209, 3017, 6434, ...
-
A[n_, k_] := (-1)^n * Sum[(-1)^(Mod[k+1, 2] * j) * Binomial[n + k - 1, k*j + k - 1], {j, 0, Floor[n/k]}]; Table[A[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 25 2021 *)
A126713
The triangle K referred to in A038200, read along rows.
Original entry on oeis.org
1, -1, 1, 1, -3, 1, -1, 7, -4, 1, 1, -15, 10, -5, 1, -1, 31, -19, 15, -6, 1, 1, -63, 28, -35, 21, -7, 1, -1, 127, -28, 71, -56, 28, -8, 1, 1, -255, 1, -135, 126, -84, 36, -9, 1, -1, 511, 80, 255, -251, 210, -120, 45, -10, 1, 1, -1023, -242, -495, 451, -462, 330, -165, 55, -11, 1, -1, 2047, 485, 991, -726, 925, -792, 495, -220
Offset: 0
If the leftmost column of the triangle in A020921 is deleted we get
1
1 1
2 3 1
2 5 4 1
4 10 10 5 1
2 11 19 15 6 1
6 21 35 35 21 7 1
4 22 52 69 56 28 8 1
6 33 83 126 126 84 36 9 1
The present triangle is the inverse of this, namely
1
-1 1
1 -3 1
-1 7 -4 1
1 -15 10 -5 1
-1 31 -19 15 -6 1
1 -63 28 -35 21 -7 1
-1 127 -28 71 -56 28 -8 1
with row sums 1,0,-1,3,-8,21,-54,134,-318,720 of A038200.
-
A020921 := proc(n,k) option remember; local divs; if n <= 0 then 1; elif k > n then 0; else divs := numtheory[divisors](n); add(numtheory[mobius](op(i,divs))*binomial(n/op(i,divs),k),i=1..nops(divs)); fi; end: A020921t := proc(n,k) option remember; A020921(n+1,k+1); end: TriLInv := proc(nmax) local a,row,col; a := array(0..nmax,0..nmax); for row from 0 to nmax do for col from row+1 to nmax do a[row,col] := 0; od; od; for row from 0 to nmax do for col from row to 0 by -1 do if row <> col then a[row,col] := -add(a[row,c]*A020921t(c,col),c=col+1..row)/A020921t(col,col); else a[row,col] := (1-add(a[row,c]*A020921t(c,col),c=col+1..row))/A020921t(col,col); fi; od; od; RETURN(a); end: nmax := 12 : a := TriLInv(nmax) : for row from 0 to nmax do for col from 0 to row do printf("%d, ",a[row,col]); od; od:
-
f[n_] := (1/(1+x))*Sum[x^(k-1)/((1+x)^k-y*x^k), {k, 1, n+1}]; t[0, 0] = 1; t[n_, k_] := SeriesCoefficient[f[n], {x, 0, n}, {y, 0, k}]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 13 2013, after Vladeta Jovovic *)
Showing 1-5 of 5 results.
Comments