cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A319542 Record values in A039932.

Original entry on oeis.org

1, 51, 531, 2571, 15703, 90271, 102053, 530102, 4550102, 4570102, 4580102, 22900501, 134003006, 1002003005, 5001002003, 5003001002, 30005001002, 30005002001, 200030005001, 1000200030005, 5000100020003, 5000300010002
Offset: 1

Views

Author

David Radcliffe, Sep 22 2018

Keywords

Comments

The positive integer n belongs to the sequence iff there exists a positive integer k so that each of the first k multiples of n contains the decimal digit 1, but no smaller n has this property for the same value of k.

Examples

			51 is a term because the first three multiples of 51 (51, 102, 153) all contain the digit 1, and 51 is the least positive integer with this property.
		

Crossrefs

Cf. A319548, A039932, A317173. Subset of A011531.

A319548 Indices of record values in A039932.

Original entry on oeis.org

1, 3, 4, 7, 14, 22, 23, 38, 43, 44, 48, 97, 150, 243, 443, 444, 667, 668, 1244, 2443, 4443, 4444
Offset: 1

Views

Author

David Radcliffe, Sep 22 2018

Keywords

Comments

A positive integer k belongs to the sequence iff there exists a positive integer n so that each of the first k multiples of n contains the decimal digit 1, but (k+1)*n does not contain the decimal digit 1, and no smaller value of n has this property for the same value of k.

Examples

			3 is a term because the first three multiples of 51 (51, 102, 153) all contain the decimal digit 1, and this is the unique longest sequence of this kind whose first term is 51 or less.
		

Crossrefs

Formula

A039932(a(n)) = A319542(n).

A039938 Smallest k for which k, 2k, ... nk all contain the digit 7.

Original entry on oeis.org

7, 37, 237, 1789, 4357, 14379, 19587, 93957, 189572, 189572, 189597, 189597, 189597, 1234397, 1839597, 1958798, 1983957, 1983957, 1983957, 1983957, 1983957, 1983957, 3978594, 11983957, 19596487, 29195397, 29195397, 29195397
Offset: 1

Views

Author

Keywords

Examples

			a(2)=37 since 37 and 74 contain a 7.
		

Crossrefs

Programs

  • Mathematica
    Table[SelectFirst[Range[10^6], Times @@ Boole@ Map[DigitCount[#, 10, 7] > 0 &, # Range@ n] > 0 &], {n, 12}] (* Michael De Vlieger, Apr 27 2017, Version 10 *)

Extensions

More terms from Patrick De Geest, Oct 15 1999

A039933 Smallest k for which k, 2k, ... n*k all contain the digit 2.

Original entry on oeis.org

2, 12, 124, 624, 624, 642, 4062, 4062, 4128, 4128, 23041, 23041, 23041, 23041, 144032, 144032, 144032, 144032, 144032, 144032, 144032, 1201804, 1201804, 1201804, 1276048, 1276048, 1276048, 1276048, 1276048, 1276048, 8020604
Offset: 1

Views

Author

Keywords

Comments

a(288) > 5*10^11. - Giovanni Resta, Apr 27 2017

Examples

			a(3)=624 since 624, 1248, and 1872 all contain a 2.
		

Crossrefs

Extensions

More terms from Patrick De Geest, Oct 15 1999

A039934 Smallest k for which k, 2*k, ..., n*k all contain the digit 3.

Original entry on oeis.org

3, 153, 1153, 1183, 3465, 7673, 7673, 7673, 65913, 65913, 65913, 76923, 232767, 232767, 232767, 232767, 232767, 2307767, 2307767, 2307767, 2307767, 3076923, 6923313, 17078903, 19507893, 56695913, 56695913, 113322666, 113322666
Offset: 1

Views

Author

Keywords

Comments

a(169) > 7*10^11. - Giovanni Resta, Apr 27 2017
a(169) = a(170) = ... = a(188) = 1538461526061, and a(189) > 2*10^12. - David Radcliffe, Sep 12 2018

Examples

			a(2)=153 since 153 and 306 both contain a 3, and 153 is the smallest number for which this is the case.
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    def agen(startn=1, startk=1):
        n = startn
        for k in count(startk):
            ki, nn = k, 0
            while "3" in str(ki): ki += k; nn += 1
            while n < ki//k: yield k; n += 1
    print(list(islice(agen(), 22))) # Michael S. Branicky, Jul 31 2022

Extensions

More terms from Patrick De Geest, Oct 15 1999

A039935 Smallest k for which k, 2k, ... nk all contain the digit 4.

Original entry on oeis.org

4, 24, 47, 471, 487, 1248, 1249, 6248, 6249, 6249, 12493, 12493, 12493, 12493, 12498, 31249, 62499, 62499, 62499, 62499, 62499, 62499, 62499, 62499, 62499, 62499, 62499, 62499, 62499, 62499, 62499, 312497, 312497, 312497, 624984, 624984, 624984, 624984, 624984
Offset: 1

Views

Author

Keywords

Examples

			a(3) = 47 since 47, 94 and 141 all contain a 4.
		

Crossrefs

Programs

  • Python
    def aupton(terms):
      k, n, alst = 1, 1, []
      while len(alst) < terms:
        while not all(str(i*k).count('4') > 0 for i in range(1, n+1)): k += 1
        while str(n*k).count('4') > 0: alst.append(k); n += 1
        k += 1
      return alst[:terms]
    print(aupton(39)) # Michael S. Branicky, Apr 24 2021

Extensions

More terms from Patrick De Geest, Oct 15 1999

A039936 Smallest k for which k, 2k, ... nk all contain the digit 5.

Original entry on oeis.org

5, 25, 25, 125, 125, 125, 125, 625, 625, 625, 625, 625, 625, 625, 625, 3125, 3125, 3125, 3125, 3125, 3125, 3125, 3125, 3125, 3125, 3125, 3125, 3125, 3125, 3125, 3125, 15625, 15625, 15625, 15625, 15625, 15625, 15625, 15625, 15625, 15625, 15625
Offset: 1

Views

Author

Keywords

Examples

			a(3)=25 since 25, 50, and 75 all contain a 5.
		

Crossrefs

Extensions

More terms from Patrick De Geest, Oct 15 1999

A039937 Smallest k for which k, 2k, ... nk all contain the digit 6.

Original entry on oeis.org

6, 63, 563, 1563, 1632, 3216, 12316, 23266, 66321, 66321, 76923, 76923, 156328, 280692, 566331, 566331, 566331, 2307692, 2307692, 2307692, 2307692, 2307692, 2307692, 2307692, 2307692, 11533664, 23306676, 23306676, 23306676, 23306676
Offset: 1

Views

Author

Keywords

Comments

a(197) > 10^12. - Giovanni Resta, Apr 27 2017

Examples

			a(2)=63 since 63 and 126 contain a 6.
		

Crossrefs

Extensions

More terms from Patrick De Geest, Oct 15 1999

A039939 Smallest k for which k, 2k, ... nk all contain the digit 8.

Original entry on oeis.org

8, 84, 284, 2842, 8937, 8964, 8964, 85964, 89641, 89641, 89641, 89729, 296984, 429817, 897299, 897299, 897299, 897299, 897299, 897299, 897299, 897299, 897299, 8697299, 9897947, 9929817, 9929817, 9929817, 9929817, 9929817, 9929817
Offset: 1

Views

Author

Keywords

Examples

			a(2)=84 since 84 and 168 contain a 8.
		

Crossrefs

Extensions

More terms from Patrick De Geest, Oct 15 1999

A039940 Smallest k for which k, 2k, ... nk all contain the digit 9.

Original entry on oeis.org

9, 49, 97, 98, 98, 99, 99, 99, 99, 99, 99, 499, 992, 993, 993, 994, 994, 994, 995, 995, 995, 995, 996, 996, 996, 996, 996, 997, 997, 997, 997, 997, 997, 997, 997, 997, 997, 998, 998, 998, 998, 998, 998, 998, 998, 998, 998, 998, 998, 998, 998, 998, 998, 998
Offset: 1

Views

Author

Keywords

Examples

			a(11)=99 since 99, 198, 297, 396, 495, 594, 693, 792, 891, 990, and 1089 all contain a 9.
		

Crossrefs

Extensions

More terms from Patrick De Geest, Oct 15 1999
Showing 1-10 of 10 results.