cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A285846 A039938 with duplicates removed.

Original entry on oeis.org

7, 37, 237, 1789, 4357, 14379, 19587, 93957, 189572, 189597, 1234397, 1839597, 1958798, 1983957, 3978594, 11983957, 19596487, 29195397, 39599197, 195991487, 339799143, 395991697, 1429199397, 1679895983, 1983994799, 2239951987, 11959939917, 15991995897
Offset: 1

Views

Author

J. Lowell, Apr 27 2017

Keywords

Comments

Any proof that this sequence is infinite?
This sequence is infinite because A039938 is indeed infinite and for any number k there is a multiple of k which does not contain a '7', so A039938 contains infinitely many distinct terms. Both parts are easy to prove. - Giovanni Resta, Feb 26 2019

Crossrefs

Cf. A039938.
Subsequence of A011537.

Programs

  • Mathematica
    Union@ Table[SelectFirst[Range[10^6], Times @@ Boole@ Map[DigitCount[#, 10, 7] > 0 &, # Range@ n] > 0 &], {n, 12}] (* Michael De Vlieger, Apr 27 2017, Version 10 *)

Extensions

a(19)-a(28) from Giovanni Resta, Apr 27 2017

A039932 Smallest number k for which k, 2k, ... nk all contain the digit 1.

Original entry on oeis.org

1, 51, 51, 531, 2571, 2571, 2571, 15703, 15703, 15703, 15703, 15703, 15703, 15703, 90271, 90271, 90271, 90271, 90271, 90271, 90271, 90271, 102053, 530102, 530102, 530102, 530102, 530102, 530102, 530102, 530102, 530102, 530102, 530102, 530102
Offset: 1

Views

Author

Keywords

Comments

There are relatively few distinct terms in this sequence. The following list shows the frequencies of a(n) for n=1..2443. - Georg Fischer, Feb 21 2021
1 1
2 51
1 531
3 2571
7 15703
8 90271
1 102053
15 530102
5 4550102
1 4570102
4 4580102
49 22900501
53 134003006
93 1002003005
200 5001002003
1 5003001002
223 30005001002
1 30005002001
576 200030005001
1199 1000200030005

Examples

			a(3)=51 since 51, 102, and 153 all contain a 1.
		

Crossrefs

Extensions

More terms from Patrick De Geest, Oct 15 1999

A039933 Smallest k for which k, 2k, ... n*k all contain the digit 2.

Original entry on oeis.org

2, 12, 124, 624, 624, 642, 4062, 4062, 4128, 4128, 23041, 23041, 23041, 23041, 144032, 144032, 144032, 144032, 144032, 144032, 144032, 1201804, 1201804, 1201804, 1276048, 1276048, 1276048, 1276048, 1276048, 1276048, 8020604
Offset: 1

Views

Author

Keywords

Comments

a(288) > 5*10^11. - Giovanni Resta, Apr 27 2017

Examples

			a(3)=624 since 624, 1248, and 1872 all contain a 2.
		

Crossrefs

Extensions

More terms from Patrick De Geest, Oct 15 1999

A039934 Smallest k for which k, 2*k, ..., n*k all contain the digit 3.

Original entry on oeis.org

3, 153, 1153, 1183, 3465, 7673, 7673, 7673, 65913, 65913, 65913, 76923, 232767, 232767, 232767, 232767, 232767, 2307767, 2307767, 2307767, 2307767, 3076923, 6923313, 17078903, 19507893, 56695913, 56695913, 113322666, 113322666
Offset: 1

Views

Author

Keywords

Comments

a(169) > 7*10^11. - Giovanni Resta, Apr 27 2017
a(169) = a(170) = ... = a(188) = 1538461526061, and a(189) > 2*10^12. - David Radcliffe, Sep 12 2018

Examples

			a(2)=153 since 153 and 306 both contain a 3, and 153 is the smallest number for which this is the case.
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    def agen(startn=1, startk=1):
        n = startn
        for k in count(startk):
            ki, nn = k, 0
            while "3" in str(ki): ki += k; nn += 1
            while n < ki//k: yield k; n += 1
    print(list(islice(agen(), 22))) # Michael S. Branicky, Jul 31 2022

Extensions

More terms from Patrick De Geest, Oct 15 1999

A039935 Smallest k for which k, 2k, ... nk all contain the digit 4.

Original entry on oeis.org

4, 24, 47, 471, 487, 1248, 1249, 6248, 6249, 6249, 12493, 12493, 12493, 12493, 12498, 31249, 62499, 62499, 62499, 62499, 62499, 62499, 62499, 62499, 62499, 62499, 62499, 62499, 62499, 62499, 62499, 312497, 312497, 312497, 624984, 624984, 624984, 624984, 624984
Offset: 1

Views

Author

Keywords

Examples

			a(3) = 47 since 47, 94 and 141 all contain a 4.
		

Crossrefs

Programs

  • Python
    def aupton(terms):
      k, n, alst = 1, 1, []
      while len(alst) < terms:
        while not all(str(i*k).count('4') > 0 for i in range(1, n+1)): k += 1
        while str(n*k).count('4') > 0: alst.append(k); n += 1
        k += 1
      return alst[:terms]
    print(aupton(39)) # Michael S. Branicky, Apr 24 2021

Extensions

More terms from Patrick De Geest, Oct 15 1999

A039936 Smallest k for which k, 2k, ... nk all contain the digit 5.

Original entry on oeis.org

5, 25, 25, 125, 125, 125, 125, 625, 625, 625, 625, 625, 625, 625, 625, 3125, 3125, 3125, 3125, 3125, 3125, 3125, 3125, 3125, 3125, 3125, 3125, 3125, 3125, 3125, 3125, 15625, 15625, 15625, 15625, 15625, 15625, 15625, 15625, 15625, 15625, 15625
Offset: 1

Views

Author

Keywords

Examples

			a(3)=25 since 25, 50, and 75 all contain a 5.
		

Crossrefs

Extensions

More terms from Patrick De Geest, Oct 15 1999

A039937 Smallest k for which k, 2k, ... nk all contain the digit 6.

Original entry on oeis.org

6, 63, 563, 1563, 1632, 3216, 12316, 23266, 66321, 66321, 76923, 76923, 156328, 280692, 566331, 566331, 566331, 2307692, 2307692, 2307692, 2307692, 2307692, 2307692, 2307692, 2307692, 11533664, 23306676, 23306676, 23306676, 23306676
Offset: 1

Views

Author

Keywords

Comments

a(197) > 10^12. - Giovanni Resta, Apr 27 2017

Examples

			a(2)=63 since 63 and 126 contain a 6.
		

Crossrefs

Extensions

More terms from Patrick De Geest, Oct 15 1999

A039939 Smallest k for which k, 2k, ... nk all contain the digit 8.

Original entry on oeis.org

8, 84, 284, 2842, 8937, 8964, 8964, 85964, 89641, 89641, 89641, 89729, 296984, 429817, 897299, 897299, 897299, 897299, 897299, 897299, 897299, 897299, 897299, 8697299, 9897947, 9929817, 9929817, 9929817, 9929817, 9929817, 9929817
Offset: 1

Views

Author

Keywords

Examples

			a(2)=84 since 84 and 168 contain a 8.
		

Crossrefs

Extensions

More terms from Patrick De Geest, Oct 15 1999

A039940 Smallest k for which k, 2k, ... nk all contain the digit 9.

Original entry on oeis.org

9, 49, 97, 98, 98, 99, 99, 99, 99, 99, 99, 499, 992, 993, 993, 994, 994, 994, 995, 995, 995, 995, 996, 996, 996, 996, 996, 997, 997, 997, 997, 997, 997, 997, 997, 997, 997, 998, 998, 998, 998, 998, 998, 998, 998, 998, 998, 998, 998, 998, 998, 998, 998, 998
Offset: 1

Views

Author

Keywords

Examples

			a(11)=99 since 99, 198, 297, 396, 495, 594, 693, 792, 891, 990, and 1089 all contain a 9.
		

Crossrefs

Extensions

More terms from Patrick De Geest, Oct 15 1999

A285454 Least number x such that x^n has n digits equal to k. Case k = 7.

Original entry on oeis.org

7, 76, 83, 118, 206, 959, 1083, 726, 1387, 1114, 3313, 4011, 2184, 3881, 4792, 13071, 11564, 15523, 9208, 15232, 17771, 46336, 33815, 39147, 18083, 27624, 63435, 77276, 24354, 92341, 15776, 67006, 112877, 54468, 67996, 109996, 99376, 154083, 58937, 148722, 77335
Offset: 1

Views

Author

Paolo P. Lava, Apr 19 2017

Keywords

Examples

			a(4) = 118 because 118^4 = 193877776 has 4 digits '7' and is the least number to have this property.
		

Crossrefs

Cf. A039938.

Programs

  • Maple
    P:=proc(q,h) local a,j,k,n,t; for n from 1 to q do for k from 1 to q do
    a:=convert(k^n,base,10); t:=0; for j from 1 to nops(a) do if a[j]=h then t:=t+1; fi; od;
    if t=n then print(k); break; fi; od; od; end: P(10^9,7);
  • Mathematica
    f[n_] := Block[{k = 1}, While[ Count[ IntegerDigits[k^n], 7] != n, k++]; k]; Array[f, 41] (* Robert G. Wilson v, Apr 30 2017 *)
Showing 1-10 of 11 results. Next