A039957 Squarefree numbers congruent to 3 mod 4.
3, 7, 11, 15, 19, 23, 31, 35, 39, 43, 47, 51, 55, 59, 67, 71, 79, 83, 87, 91, 95, 103, 107, 111, 115, 119, 123, 127, 131, 139, 143, 151, 155, 159, 163, 167, 179, 183, 187, 191, 195, 199, 203, 211, 215, 219, 223, 227, 231, 235, 239, 247, 251, 255
Offset: 1
References
- Richard A. Mollin, Quadratics, CRC Press, 1996, Tables B1-B3.
- Duncan A. Buell, Binary Quadratic Forms, Springer-Verlag, NY, 1989.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- A. M. Legendre, Diviseurs de la forme t^2+au^2 a étant un nombre de la forme 4n-1, Essai sur la Théorie des Nombres An VI, Table V.
Programs
-
Haskell
a039957 n = a039957_list !! (n-1) a039957_list = filter ((== 3) . (`mod` 4)) a005117_list -- Reinhard Zumkeller, Aug 15 2011
-
Magma
[4*n+3: n in [0..63] | IsSquarefree(4*n+3)]; // Bruno Berselli, Mar 04 2011
-
Mathematica
fQ[n_] := SquareFreeQ[n] && Mod[n, 4] == 3; Select[ Range@ 258, fQ] (* Robert G. Wilson v, Mar 02 2011 *) Select[Range[3,300,4],SquareFreeQ] (* Harvey P. Dale, Mar 08 2015 *)
-
PARI
is(n)=n%4==3 && issquarefree(n) \\ Charles R Greathouse IV, Feb 07 2017
Extensions
Offset corrected
Comments