A040075 5-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^5.
1, 20, 240, 2240, 17920, 129024, 860160, 5406720, 32440320, 187432960, 1049624576, 5725224960, 30534533120, 159719096320, 821412495360, 4161823309824, 20809116549120, 102821517066240, 502682972323840, 2434043865989120, 11683410556747776, 55635288365465600
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Eric Weisstein's World of Mathematics, Idempotent Number.
- Index entries for linear recurrences with constant coefficients, signature (20, -160, 640, -1280, 1024).
Programs
-
GAP
List([0..30], n-> 4^n*Binomial(n+4, 4)); # G. C. Greubel, Jul 20 2019
-
Magma
[4^n*Binomial(n+4, 4): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
Maple
seq(seq(binomial(i, j)*4^(i-4), j =i-4), i=4..22); # Zerinvary Lajos, Dec 03 2007 seq(binomial(n+4,4)*4^n,n=0..30); # Zerinvary Lajos, May 19 2008 spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, Z, Z, Z, B, B, B, B)}, labeled]: seq(combstruct[count](spec, size=n)/24, n=4..34); # Zerinvary Lajos, Apr 05 2009
-
Mathematica
Table[Binomial[n+4,4]*4^n, {n,0,30}] (* Michael De Vlieger, Aug 21 2015 *)
-
PARI
vector(30, n, n--; 4^n*binomial(n+4, 4)) \\ G. C. Greubel, Jul 20 2019
-
Sage
[lucas_number2(n, 4, 0)*binomial(n,4)/2^8 for n in range(4, 34)] # Zerinvary Lajos, Mar 11 2009
Formula
a(n) = binomial(n+4, 4)*4^n.
G.f.: 1/(1-4*x)^5.
a(n) = Sum_{ i_1+i_2+i_3+i_4+i_5+i_6+i_7+i_8+i_9+i_10 = n } f(i_1)*f(i_2) *f(i_3)*f(i_4)*f(i_5)*f(i_6)*f(i_7)*f(i_8)*f(i_9)*f(i_10) with f(k)=A000984(k). - Rui Duarte, Oct 08 2011
E.g.f.: (3 + 48*x + 144*x^2 + 128*x^3 + 32*x^4)*exp(4*x)/3. - G. C. Greubel, Jul 20 2019
From Amiram Eldar, Mar 25 2022: (Start)
Sum_{n>=0} 1/a(n) = 376/3 - 432*log(4/3).
Sum_{n>=0} (-1)^n/a(n) = 2000*log(5/4) - 1336/3. (End)
Comments