cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A177157 Decimal expansion of sqrt(221).

Original entry on oeis.org

1, 4, 8, 6, 6, 0, 6, 8, 7, 4, 7, 3, 1, 8, 5, 0, 5, 5, 2, 2, 6, 1, 2, 0, 0, 8, 2, 1, 3, 9, 3, 1, 3, 9, 6, 6, 5, 1, 4, 4, 8, 9, 8, 5, 5, 1, 3, 7, 2, 0, 8, 6, 1, 5, 6, 0, 5, 6, 3, 0, 9, 4, 8, 1, 0, 2, 5, 1, 8, 3, 7, 3, 1, 4, 7, 8, 1, 1, 6, 7, 6, 5, 8, 6, 1, 5, 8, 3, 6, 4, 6, 0, 2, 7, 3, 9, 6, 1, 1, 0, 0, 7, 2, 4, 1
Offset: 2

Views

Author

Klaus Brockhaus, May 03 2010

Keywords

Comments

Continued fraction expansion of sqrt(221) is A040206.

Examples

			sqrt(221) = 14.86606874731850552261...
		

Crossrefs

Cf. A010470 (decimal expansion of sqrt(13)), A010473 (decimal expansion of sqrt(17)), A177156 (decimal expansion of (9+sqrt(221))/14), A040206 (14 followed by (repeat 1, 6, 2, 6, 1, 28)).

A041413 Denominators of continued fraction convergents to sqrt(221).

Original entry on oeis.org

1, 1, 7, 15, 97, 112, 3233, 3345, 23303, 49951, 323009, 372960, 10765889, 11138849, 77598983, 166336815, 1075619873, 1241956688, 35850407137, 37092363825, 258404590087, 553901543999, 3581813854081, 4135715398080, 119381845000321, 123517560398401
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,7,15,97,112,3233,3345,23303,49951,323009, 372960]; [n le 12 select I[n] else 3330*Self(n-6)-Self(n-12): n in [1..40]]; // Vincenzo Librandi, Dec 17 2013
  • Mathematica
    Denominator/@Convergents[Sqrt[221],30]  (* Harvey P. Dale, Apr 02 2011 *)
    CoefficientList[Series[-(x^10 - x^9 + 7 x^8 - 15 x^7 + 97 x^6 - 112 x^5 - 97 x^4 - 15 x^3 - 7 x^2 - x - 1)/((x^4 - 15 x^2 + 1) (x^8 + 15 x^6 + 224 x^4 + 15 x^2 + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 17 2013 *)

Formula

G.f.: -(x^10 -x^9 +7*x^8 -15*x^7 +97*x^6 -112*x^5 -97*x^4 -15*x^3 -7*x^2 -x -1) / ((x^4 -15*x^2 +1)*(x^8 +15*x^6 +224*x^4 +15*x^2 +1)). - Colin Barker, Nov 17 2013
a(n) = 3330*a(n-6) - a(n-12). - Vincenzo Librandi, Dec 17 2013

Extensions

More terms from Colin Barker, Nov 17 2013
Showing 1-2 of 2 results.