cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A040984 Primes p such that x^23 = 2 has no solution mod p.

Original entry on oeis.org

47, 139, 277, 461, 599, 691, 829, 967, 1013, 1151, 1289, 1381, 1427, 1657, 1933, 1979, 2347, 2393, 2531, 3037, 3083, 3221, 3313, 3359, 3727, 3911, 4003, 4049, 4463, 4831, 4877, 4969, 5107, 5521, 5659, 5843, 5981, 6073, 6211, 6257, 6763, 6947, 7039, 7177
Offset: 1

Views

Author

Klaus Brockhaus, Jan 20 2001

Keywords

Comments

Contribution from Charles R Greathouse IV, Sep 12 2012: (Start)
Complement of A049555 relative to A000040.
Terms of A212374 which are not in this sequence: 5153, 18539, 20747, 49681, 51199, 51797, 55201, 70381, .... (End)

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(8000) | forall{x: x in ResidueClassRing(p) | x^23 ne 2}]; // Vincenzo Librandi, Aug 21 2012
    
  • Mathematica
    Select[Prime[Range[PrimePi[7200]]], ! MemberQ[PowerMod[Range[#], 23, #], Mod[2, #]] &] (* T. D. Noe, Sep 13 2012 *)
     ok[p_]:=Reduce[Mod[x^23 - 2, p]==0, x, Integers]==False; Select[Prime[Range[25000]], ok] (* Vincenzo Librandi, Sep 13 2012 *)
  • PARI
    select(n->!ispower(Mod(2,n),23),primes(1000)) \\ Charles R Greathouse IV, Sep 12 2012