cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A141908 Primes congruent to 2 mod 23.

Original entry on oeis.org

2, 71, 163, 347, 439, 577, 761, 853, 991, 1129, 1451, 1543, 2003, 2141, 2371, 2417, 2647, 2693, 2969, 3061, 3613, 3659, 3797, 3889, 4027, 4073, 4211, 4349, 4441, 4993, 5039, 5407, 5591, 5683, 5821, 5867, 6143, 6373, 6833, 6971, 7109, 7247, 7477, 7523, 7753
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

{2} UNION A142344. - R. J. Mathar, Jul 20 2008

A100201 Primes of the form 23n+3.

Original entry on oeis.org

3, 233, 463, 509, 601, 647, 739, 877, 1061, 1153, 1291, 1429, 1567, 1613, 1889, 2027, 2441, 2579, 2671, 3361, 3407, 3499, 3637, 3821, 4051, 4327, 4373, 4603, 4649, 4787, 5431, 5477, 5569, 6029, 6121, 6397, 6581, 6673, 6719, 6857, 6949, 7547, 7639, 7823
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Dec 27 2004

Keywords

Crossrefs

Programs

A212374 Primes congruent to 1 mod 23.

Original entry on oeis.org

47, 139, 277, 461, 599, 691, 829, 967, 1013, 1151, 1289, 1381, 1427, 1657, 1933, 1979, 2347, 2393, 2531, 3037, 3083, 3221, 3313, 3359, 3727, 3911, 4003, 4049, 4463, 4831, 4877, 4969, 5107, 5153, 5521, 5659, 5843, 5981, 6073, 6211, 6257, 6763, 6947, 7039, 7177
Offset: 1

Views

Author

Bruno Berselli, Sep 12 2012

Keywords

Comments

This sequence is not the same as A040984. First disagreement at index 34: a(34)=5153, A040984(34)=5521.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(7200) | p mod 23 eq 1];
    
  • Maple
    select(p->irem(p, 23)=1, [ithprime(i)$i=1..1000])[]; # Alois P. Heinz, Sep 12 2012
  • Mathematica
    Select[Prime[Range[1000]], Mod[#, 23] == 1 &]
    Select[Range[1,7200,23],PrimeQ] (* Harvey P. Dale, Jul 02 2018 *)
  • PARI
    is(n)=isprime(n) && n%23==1 \\ Charles R Greathouse IV, Jul 03 2016

Formula

a(n) ~ 22n log n. - Charles R Greathouse IV, Jul 03 2016

A049555 Primes p such that x^23 = 2 has a solution mod p.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 281, 283
Offset: 1

Views

Author

Keywords

Comments

Complement of A040984 relative to A000040. - Vincenzo Librandi, Sep 14 2012

Examples

			0^23 == 2 (mod 2). 2^23 == 2 (mod 3). 3^23 == 2 (mod 5). 4^23 == 2 (mod 7). 7^23 == 2 (mod 11). 7^23 == 2 (mod 13). 9^23 == 2 (mod 17). 15^23 == 2 (mod 19). 2^23 == 2 (mod 23). 18^23 == 2 (mod 29). 4^23 == 2 (mod 31). 13^23 == 2 (mod 37). 5^23 == 2 (mod 41). 27^23 == 2 (mod 43). - _R. J. Mathar_, Jul 20 2025
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(300) | exists(t){x : x in ResidueClassRing(p) | x^23 eq 2}]; // Vincenzo Librandi, Sep 14 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^23 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[150]], ok] (* Vincenzo Librandi, Sep 14 2012 *)

A102734 Primes of the form 23n+5.

Original entry on oeis.org

5, 97, 281, 373, 419, 557, 787, 971, 1063, 1109, 1201, 1523, 1753, 2029, 2213, 2351, 2719, 2857, 2903, 3041, 3271, 3547, 3593, 3823, 4007, 4099, 4283, 4421, 4513, 4651, 4789, 4973, 5387, 5479, 5801, 5939, 6353, 6491, 6997, 7043, 7411, 7457, 7549, 7687
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Feb 07 2005

Keywords

Crossrefs

Programs

A141919 Primes congruent to 15 mod 23.

Original entry on oeis.org

61, 107, 199, 337, 383, 521, 613, 659, 751, 797, 1303, 1487, 1579, 1901, 1993, 2039, 2131, 2269, 2591, 2683, 2729, 3373, 3511, 3557, 3833, 4201, 4339, 4523, 4799, 4937, 5167, 5351, 5443, 5581, 5857, 5903, 6133, 6271, 6317, 6547, 6823, 6869, 6961, 7237, 7283
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 22n log n. - Charles R Greathouse IV, Jul 02 2016

A141909 Primes congruent to 4 mod 23.

Original entry on oeis.org

73, 211, 257, 349, 487, 809, 947, 1039, 1223, 1361, 1453, 1499, 1637, 1867, 1913, 2143, 2281, 2557, 2741, 2833, 2879, 2971, 3109, 4259, 4397, 4673, 4903, 5087, 5179, 5501, 5639, 5869, 6007, 6053, 6329, 6421, 7019, 7433, 8123, 8353, 8537, 8629, 8951, 9043
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Primes congruent to 27 mod 46. - Chai Wah Wu, Apr 28 2025

Crossrefs

Programs

Formula

a(n) ~ 22n log n. - Charles R Greathouse IV, Jul 03 2016

A141910 Primes congruent to 6 mod 23.

Original entry on oeis.org

29, 167, 397, 443, 673, 719, 811, 857, 1087, 1409, 1777, 1823, 2053, 2099, 2237, 2467, 2789, 2927, 3019, 3203, 3433, 3571, 3617, 3709, 3847, 4261, 4583, 4721, 4813, 4951, 5227, 5273, 5503, 5641, 5779, 6101, 6469, 6607, 6653, 6791, 6883, 7159, 7297, 7481
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 22n log n. - Charles R Greathouse IV, Jul 03 2016

A141911 Primes congruent to 7 mod 23.

Original entry on oeis.org

7, 53, 191, 283, 421, 467, 743, 881, 1019, 1249, 1433, 1571, 1663, 1709, 1801, 1847, 2399, 2767, 3089, 3181, 3319, 3457, 3733, 3779, 3917, 4423, 4561, 5021, 5113, 5297, 5527, 5573, 5711, 5849, 5987, 6079, 6217, 6263, 6907, 7229, 7321, 7459, 7643, 7873, 7919
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 22n log n. - Charles R Greathouse IV, Jul 03 2016

A141912 Primes congruent to 8 mod 23.

Original entry on oeis.org

31, 307, 353, 491, 859, 997, 1181, 1319, 1549, 1733, 1871, 2239, 2377, 2423, 2699, 2791, 2837, 3067, 3251, 3343, 3389, 3527, 3803, 4079, 4217, 4447, 4493, 4723, 4861, 4999, 5413, 5689, 5827, 6011, 6287, 6379, 6563, 6701, 6793, 6977, 7069, 7207, 7253, 7529
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 22n log n. - Charles R Greathouse IV, Jul 03 2016
Showing 1-10 of 15 results. Next