A041008 Numerators of continued fraction convergents to sqrt(7).
2, 3, 5, 8, 37, 45, 82, 127, 590, 717, 1307, 2024, 9403, 11427, 20830, 32257, 149858, 182115, 331973, 514088, 2388325, 2902413, 5290738, 8193151, 38063342, 46256493, 84319835, 130576328, 606625147, 737201475, 1343826622, 2081028097, 9667939010, 11748967107, 21416906117
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- C. Elsner, Series of Error Terms for Rational Approximations of Irrational Numbers, J. Int. Seq. 14 (2011) # 11.1.4.
- C. Elsner, M. Stein, On Error Sum Functions Formed by Convergents of Real Numbers, J. Int. Seq. 14 (2011) # 11.8.6.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,16,0,0,0,-1).
Crossrefs
Programs
-
Mathematica
Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[7],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *) Numerator[Convergents[Sqrt[7], 30]] (* Vincenzo Librandi, Oct 28 2013 *) LinearRecurrence[{0,0,0,16,0,0,0,-1},{2,3,5,8,37,45,82,127},40] (* Harvey P. Dale, Jul 23 2021 *)
-
PARI
A041008=contfracpnqn(c=contfrac(sqrt(7)),#c)[1,][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A041008[n+1]! For more terms use: A041008(n)={n<#A041008|| A041008=extend(A041008, [4, 16; 8, -1], n\.8); A041008[n+1]} extend(A,c,N)={for(n=#A+1, #A=Vec(A, N), A[n]=[A[n-i]|i<-c[,1]]*c[,2]); A} \\ (End)
Formula
G.f.: (2 + 3*x + 5*x^2 + 8*x^3 + 5*x^4 - 3*x^5 + 2*x^6 - x^7)/(1 - 16*x^4 + x^8).