cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041019 Denominators of continued fraction convergents to sqrt(13).

Original entry on oeis.org

1, 1, 2, 3, 5, 33, 38, 71, 109, 180, 1189, 1369, 2558, 3927, 6485, 42837, 49322, 92159, 141481, 233640, 1543321, 1776961, 3320282, 5097243, 8417525, 55602393, 64019918, 119622311, 183642229, 303264540, 2003229469, 2306494009, 4309723478, 6616217487, 10925940965
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010122 (continued fraction for sqrt(13)), A041018 (numerators).

Programs

  • Magma
    I:=[1, 1, 2, 3, 5, 33, 38, 71, 109, 180]; [n le 10 select I[n] else 36*Self(n-5)+Self(n-10): n in [1..50]]; // Vincenzo Librandi, Dec 10 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[13], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    CoefficientList[Series[((1 - 2 x + 4 x^2 - 3 x^3 + x^4) (1 + 3 x + 4 x^2 + 2 x^3 + x^4))/(1 - 36 x^5 - x^10), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 10 2013 *)
    LinearRecurrence[{0,0,0,0,36,0,0,0,0,1},{1,1,2,3,5,33,38,71,109,180},40] (* Harvey P. Dale, Sep 30 2016 *)

Formula

From Johannes W. Meijer, Jun 12 2010: (Start)
a(5*n) = A006190(3*n+1),
a(5*n+1) = (A006190(3*n+2) - A006190(3*n+1))/2,
a(5*n+2) = (A006190(3*n+2) + A006190(3*n+1))/2,
a(5*n+3) = A006190(3*n+2) and a(5*n+4) = A006190(3*n+3)/2. (End)
G.f.: ((1 - 2*x + 4*x^2 - 3*x^3 + x^4)*(1 + 3*x + 4*x^2 + 2*x^3 + x^4))/(1 - 36*x^5 - x^10). - Peter J. C. Moses, Jul 29 2013
a(n) = A010122(n)*a(n-1) + a(n-2), a(0)=1, a(-1)=0. - Paul Weisenhorn, Aug 17 2018

Extensions

More terms from Vincenzo Librandi, Dec 10 2013