A041023 Denominators of continued fraction convergents to sqrt(15).
1, 1, 7, 8, 55, 63, 433, 496, 3409, 3905, 26839, 30744, 211303, 242047, 1663585, 1905632, 13097377, 15003009, 103115431, 118118440, 811826071, 929944511, 6391493137, 7321437648, 50320119025
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Eric W. Weisstein, MathWorld: Lehmer Number
- Index entries for linear recurrences with constant coefficients, signature (0,8,0,-1).
Programs
-
Mathematica
Denominator[NestList[(6/(6+#))&,0,60]] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2010 *) a0[n_] := (-((-5+Sqrt[15])*(4+Sqrt[15])^n)+(4-Sqrt[15])^n*(5+Sqrt[15]))/10 // Simplify a1[n_] := (-(4-Sqrt[15])^n+(4+Sqrt[15])^n)/(2*Sqrt[15]) // Simplify Flatten[MapIndexed[{a0[#], a1[#]} &,Range[20]]] (* Gerry Martens, Jul 11 2015 *) Convergents[Sqrt[15],30]//Denominator (* Harvey P. Dale, Aug 13 2016 *)
Formula
G.f.: (1+x-x^2)/(1-8*x^2+x^4). - Colin Barker, Jan 01 2012
From Peter Bala, May 28 2014: (Start)
The following remarks assume an offset of 1.
Let alpha = ( sqrt(6) + sqrt(10) )/2 and beta = ( sqrt(6) - sqrt(10) )/2 be the roots of the equation x^2 - sqrt(6)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
a(n) = product {k = 1..floor((n-1)/2)} ( 6 + 4*cos^2(k*Pi/n) ).
Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 6*a(2*n) + a(2*n - 1). (End)
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = (-((-5+sqrt(15))*(4+sqrt(15))^n)+(4-sqrt(15))^n*(5+sqrt(15)))/10.
a1(n) = (-(4-sqrt(15))^n+(4+sqrt(15))^n)/(2*sqrt(15)). (End)
Comments