cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041024 Numerators of continued fraction convergents to sqrt(17).

Original entry on oeis.org

4, 33, 268, 2177, 17684, 143649, 1166876, 9478657, 76996132, 625447713, 5080577836, 41270070401, 335241141044, 2723199198753, 22120834731068, 179689877047297, 1459639851109444, 11856808685922849, 96314109338492236
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A041025(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 17*b^2 = +1, a(2*n) with b(2*n) := A041025(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 17*b^2 = -1 (cf. Emerson reference).
Bisection: a(2*n) = 4*S(2*n,2*sqrt(17)) = 4*A078989(n), n >= 0 and a(2*n+1) = T(n+1,33), n >= 0, with S(n,x), resp. T(n,x), Chebyshev's polynomials of the second, resp. first kind. See A049310, resp. A053120. - Wolfdieter Lang, Jan 10 2003

Crossrefs

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[17],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011*)
    LinearRecurrence[{8, 1}, {4, 33}, 25] (* Sture Sjöstedt, Dec 07 2011 *)
    CoefficientList[Series[(4 + x)/(1 - 8 x - x^2), {x, 0, 30}], x]  (* Vincenzo Librandi_, Oct 28 2013 *)

Formula

G.f.: (4+x)/(1-8*x-x^2).
a(n) = 4*A041025(n) + A041025(n-1).
a(n) = ((-i)^(n+1))*T(n+1, 4*i) with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2 = -1.
a(n) = 8*a(n-1) + a(n-2), n > 1. - Philippe Deléham, Nov 20 2008
a(n) = ((4 + sqrt(17))^n + (4 - sqrt(17))^n)/2. - Sture Sjöstedt, Dec 08 2011