A041024 Numerators of continued fraction convergents to sqrt(17).
4, 33, 268, 2177, 17684, 143649, 1166876, 9478657, 76996132, 625447713, 5080577836, 41270070401, 335241141044, 2723199198753, 22120834731068, 179689877047297, 1459639851109444, 11856808685922849, 96314109338492236
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- E. I. Emerson, Recurrent sequences in the equation DQ^2=R^2+N, Fib. Quart., 7 (1969), 231-242, Thm. 1, p. 233.
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (8,1).
Programs
-
Mathematica
Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[17],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011*) LinearRecurrence[{8, 1}, {4, 33}, 25] (* Sture Sjöstedt, Dec 07 2011 *) CoefficientList[Series[(4 + x)/(1 - 8 x - x^2), {x, 0, 30}], x] (* Vincenzo Librandi_, Oct 28 2013 *)
Formula
G.f.: (4+x)/(1-8*x-x^2).
a(n) = ((-i)^(n+1))*T(n+1, 4*i) with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2 = -1.
a(n) = 8*a(n-1) + a(n-2), n > 1. - Philippe Deléham, Nov 20 2008
a(n) = ((4 + sqrt(17))^n + (4 - sqrt(17))^n)/2. - Sture Sjöstedt, Dec 08 2011
Comments