cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A041025 Denominators of continued fraction convergents to sqrt(17).

Original entry on oeis.org

1, 8, 65, 528, 4289, 34840, 283009, 2298912, 18674305, 151693352, 1232221121, 10009462320, 81307919681, 660472819768, 5365090477825, 43581196642368, 354014663616769, 2875698505576520, 23359602708228929, 189752520171407952, 1541379764079492545
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A041024(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 17*a^2 = +1, a(2*n) with b(2*n) := A041024(2*n), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 17*a^2 = -1 (cf. Emerson reference).
Bisection: a(2*n) = T(2*n+1,sqrt(17))/sqrt(17) = A078988(n), n >= 0 and a(2*n+1) = 8*S(n-1,66), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. S(-1,x)=0. See A053120, resp. A049310. - Wolfdieter Lang, Jan 10 2003
Sqrt(17) = 8/2 + 8/65 + 8/(65*4289) + 8/(4289*283009) + ... . - Gary W. Adamson, Dec 26 2007
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 8's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
De Moivre's formula: a(n) = (r^n - s^n)/(r-s), for r > s, gives sequences with integers if r and s are conjugates. With r=4+sqrt(17) and s=4-sqrt(17), a(n+1)/a(n) converges to r=4+sqrt(17). - Sture Sjöstedt, Nov 11 2011
a(n) equals the number of words of length n on alphabet {0,1,...,8} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, Feb 21 2023: (Start)
Also called the 8-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 8 kinds of squares available. (End)

Crossrefs

Programs

Formula

G.f.: 1/(1 - 8*x - x^2).
a(n) = ((-i)^n)*S(n, 8*i), with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind and i^2 = -1. See A049310.
a(n) = F(n, 8), the n-th Fibonacci polynomial evaluated at x=8. - T. D. Noe, Jan 19 2006
From Sergio Falcon, Sep 24 2007: (Start)
a(n) = ((4 + sqrt(17))^n - (4 - sqrt(17))^n)/(2*sqrt(17));
a(n) = Sum_{i=0..floor((n-1)/2)} binomial(n-1-i,i)*8^(n-1-2i). (End)
Let T be the 2 X 2 matrix [0, 1; 1, 8]. Then T^n * [1, 0] = [a(n-2), a(n-1)]. - Gary W. Adamson, Dec 26 2007
a(n) = 8*a(n-1) + a(n-2), n > 1; a(0)=1, a(1)=8. - Philippe Deléham, Nov 20 2008
a(p-1) == 68^((p-1)/2) (mod p) for odd primes p. - Gary W. Adamson, Feb 22 2009 [Corrected by Jason Yuen, Apr 05 2025. See A087475 for more info about this congruence.]
Sum_{n>=0} (-1)^n/(a(n)*a(n+1)) = sqrt(17) - 4. - Vladimir Shevelev, Feb 23 2013
G.f.: x/(1 - 8*x - x^2) = Sum_{n >= 0} x^n *( Product_{k = 1..n} (m*k + 8 - m + x)/(1 + m*k*x) ) for arbitrary m (a telescoping series). - Peter Bala, May 08 2024

A040012 Continued fraction for sqrt(17).

Original entry on oeis.org

4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 0

Views

Author

Keywords

Comments

Decimal expansion of 22/45. - Elmo R. Oliveira, Feb 06 2024

Examples

			4.123105625617660549821409855... = 4 + 1/(8 + 1/(8 + 1/(8 + 1/(8 + ...)))). - _Harry J. Smith_, Jun 03 2009
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.4 Powers and Roots, p. 144.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Pages 275-276.

Crossrefs

Cf. A041024/A041025 (convergents), A010473 (decimal expansion), A248245 (Egyptian fraction).
Cf. A040000.

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[17],300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *)
    PadRight[{4},100,8] (* Harvey P. Dale, Jun 22 2015 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 37000); x=contfrac(sqrt(17)); for (n=0, 20000, write("b040012.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 03 2009

Formula

a(n) = 4*A040000(n). - Stefano Spezia, May 14 2023
From Elmo R. Oliveira, Feb 06 2024: (Start)
a(n) = 8 for n >= 1.
G.f.: 4*(1+x)/(1-x).
E.g.f.: 8*exp(x) - 4. (End)

A078989 Chebyshev sequence with Diophantine property.

Original entry on oeis.org

1, 67, 4421, 291719, 19249033, 1270144459, 83810285261, 5530208682767, 364909962777361, 24078527334623059, 1588817894122344533, 104837902484740116119, 6917712746098725319321, 456464203340031130959067, 30119719707695955917979101, 1987445036504593059455661599
Offset: 0

Views

Author

Wolfdieter Lang, Jan 10 2003

Keywords

Comments

One fourth of bisection (even part) of A041024.
(4*a(n))^2 - 17*A078988(n)^2= -1 (Pell -1 equation, see A077232-3).

Examples

			(x,y) = (4,1), (268,65), (17684,4289), ... give the positive integer solutions to x^2 - 17*y^2 =-1.
		

Crossrefs

Cf. A097316 for S(n, 66).
Cf. A041024.
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775.

Programs

  • GAP
    a:=[1,67];; for n in [3..20] do a[n]:=66*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Apr 05 2018
  • Mathematica
    LinearRecurrence[{66, -1}, {1, 67}, 20] (* Bruno Berselli, Apr 03 2018 *)
  • PARI
    x='x+O('x^99); Vec((1+x)/(1-66*x+x^2)) \\ Altug Alkan, Apr 05 2018
    

Formula

G.f.: (1 + x)/(1 - 66*x + x^2).
a(n) = 66*a(n-1) - a(n-2) for n>=1, a(-1)=-1, a(0)=1.
a(n) = S(2*n, 2*sqrt(17)) = -i*((-1)^n)*T(2*n+1, 4*i)/4 = S(n, 66) + S(n-1, 66) with i^2=-1 and S(n, x), resp. T(n, x), Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120.
a(n) = A041024(2*n)/4.
a(n) = (1/4)*sinh((2*n + 1)*arcsinh(4)). - Bruno Berselli, Apr 03 2018

A099370 Chebyshev polynomial of the first kind, T(n,x), evaluated at x=33.

Original entry on oeis.org

1, 33, 2177, 143649, 9478657, 625447713, 41270070401, 2723199198753, 179689877047297, 11856808685922849, 782369683393860737, 51624542295308885793, 3406437421806992601601, 224773245296966202819873
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Comments

Used in A099369.
Solutions of the Pell equation x^2 - 17y^2 = 1 (x values). After initial term this sequence bisects A041024. See 8*A097316(n-1) with A097316(-1) = 0 for corresponding y values. a(n+1)/a(n) apparently converges to (4+sqrt(17))^2. (See related comments in A088317, which this sequence also bisects.). - Rick L. Shepherd, Jul 31 2006
From a(n) = T(n, 33) (see the formula section) and the de Moivre-Binet formula for T(n,x=33) follows a(n+1)/a(n) = 33 + 8*sqrt(17), which is the conjectured value (4+sqrt(17))^2 given in the previous comment by Rick L. Shepherd. - Wolfdieter Lang, Jun 28 2013
Also numbers k such that 17*(k-1)*(k+1) is a square. - Bruno Berselli, May 31 2025

Examples

			a(1)^2 - 17*A121470(1)^2 = 33^2 - 17*8^2 = 1089 - 1088 = 1.
		

Crossrefs

Row 4 of array A188645.

Programs

  • Mathematica
    LinearRecurrence[{66, -1},{1, 33},14] (* Ray Chandler, Aug 11 2015 *)
  • PARI
    \\ Program uses fact that continued fraction for sqrt(17) = [4,8,8,...].
    print1("1, "); forstep(n=2,40,2,v=vector(n,i,if(i>1,8,4)); print1(contfracpnqn(v)[1,1],", ")) \\ Rick L. Shepherd, Jul 31 2006
    
  • PARI
    vector(20,n,polchebyshev(n-1,1,33)) \\ Joerg Arndt, Jan 01 2021

Formula

a(n) = 66*a(n-1) - a(n-2), a(-1):= 33, a(0)=1.
a(n) = T(n, 33) = (S(n, 66)-S(n-2, 66))/2 = S(n, 66)-33*S(n-1, 66) with T(n, x), resp. S(n, x), Chebyshev polynomials of the first, resp.second, kind. See A053120 and A049310. S(n, 66) = A097316(n).
a(n) = ((33+8*sqrt(17))^n + (33-8*sqrt(17))^n)/2.
a(n) = Sum_{k=0..floor(n/2)} ((-1)^k)*(n/(2*(n-k)))*binomial(n-k, k)*(2*33)^(n-2*k), for n>=1, a(0)=1.
G.f.: (1-33*x)/(1-66*x+x^2).

Extensions

A-number for y values in Pell equation corrected by Wolfdieter Lang, Jun 28 2013

A088317 a(n) = 8*a(n-1) + a(n-2), starting with a(0) = 1 and a(1) = 4.

Original entry on oeis.org

1, 4, 33, 268, 2177, 17684, 143649, 1166876, 9478657, 76996132, 625447713, 5080577836, 41270070401, 335241141044, 2723199198753, 22120834731068, 179689877047297, 1459639851109444, 11856808685922849, 96314109338492236, 782369683393860737, 6355271576489378132, 51624542295308885793
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Nov 06 2003

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 4^(n-1) else 8*Self(n-1) +Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 13 2022
    
  • Mathematica
    LinearRecurrence[{8,1},{1,4},30] (* or *) With[{c=Sqrt[17]},Simplify/@ Table[1/2 (c-4)((c+4)^n-(4-c)^n (33+8c)),{n,30}]] (* Harvey P. Dale, May 07 2012 *)
  • Maxima
    a[0]:1$ a[1]:4$ a[n]:=8*a[n-1]+a[n-2]$ A088317(n):=a[n]$
    makelist(A088317(n),n,0,20); /* Martin Ettl, Nov 12 2012 */
    
  • SageMath
    A088317=BinaryRecurrenceSequence(8,1,1,4)
    [A088317(n) for n in range(31)] # G. C. Greubel, Dec 13 2022

Formula

a(n) = ( (4+sqrt(17))^n + (4-sqrt(17))^n )/2.
a(n) = A086594(n)/2.
Lim_{n -> oo} a(n+1)/a(n) = 4 + sqrt(17).
From Paul Barry, Nov 15 2003: (Start)
E.g.f.: exp(4*x)*cosh(sqrt(17)*x).
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k)*17^k*4^(n-2*k).
a(n) = (-i)^n * T(n, 4*i) with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. (End)
a(n) = A041024(n-1), n>0. - R. J. Mathar, Sep 11 2008
G.f.: (1-4*x)/(1-8*x-x^2). - Philippe Deléham, Nov 16 2008 and Nov 20 2008
a(n) = (1/2)*((33+8*sqrt(17))*(4-sqrt(17))^(n+2) + (33-8*sqrt(17))*(4+sqrt(17))^(n+2)). - Harvey P. Dale, May 07 2012
Showing 1-5 of 5 results.