A041039 Denominators of continued fraction convergents to sqrt(24).
1, 1, 9, 10, 89, 99, 881, 980, 8721, 9701, 86329, 96030, 854569, 950599, 8459361, 9409960, 83739041, 93149001, 828931049, 922080050, 8205571449, 9127651499, 81226783441, 90354434940, 804062262961
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Eric W. Weisstein, MathWorld: Lehmer Number
- Index entries for linear recurrences with constant coefficients, signature (0,10,0,-1).
Programs
-
Mathematica
Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[24],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2011 *) Denominator[Convergents[Sqrt[24],30]] (* or *) LinearRecurrence[{0,10,0,-1},{1,1,9,10},30] (* Harvey P. Dale, Apr 12 2022 *)
Formula
G.f.: (1+x-x^2)/(1-10*x^2+x^4). - Colin Barker, Jan 01 2012
From Peter Bala, May 28 2014: (Start)
The following remarks assume an offset of 1.
Let alpha = sqrt(2) + sqrt(3) and beta = sqrt(2) - sqrt(3) be the roots of the equation x^2 - sqrt(8)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
a(n) = Product_{k = 1..floor((n-1)/2)} ( 8 + 4*cos^2(k*Pi/n) ).
Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 8*a(2*n) + a(2*n - 1). (End)
Comments