cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041062 Numerators of continued fraction convergents to sqrt(38).

Original entry on oeis.org

6, 37, 450, 2737, 33294, 202501, 2463306, 14982337, 182251350, 1108490437, 13484136594, 82013310001, 997643856606, 6067876449637, 73812161252250, 448940843963137, 5461102288809894, 33215554576822501
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[38], 30]] (* Vincenzo Librandi, Oct 29 2013 *)
    a0[n_] := (-3+Sqrt[19/2])*(37+6*Sqrt[38])^n-(6+Sqrt[38])/(2*(37+6*Sqrt[38])^n) // Simplify
    a1[n_] := (1/(37+6*Sqrt[38])^n+(37+6*Sqrt[38])^n)/2 // FullSimplify
    Flatten[MapIndexed[{a0[#], a1[#]}&, Range[20]]] (* Gerry Martens, Jul 11 2015 *)
    LinearRecurrence[{0,74,0,-1},{6,37,450,2737},20] (* Harvey P. Dale, Oct 17 2020 *)

Formula

G.f.: -(x^3-6*x^2-37*x-6) / (x^4-74*x^2+1). - Colin Barker, Nov 04 2013
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = (-3+sqrt(19/2))*(37+6*sqrt(38))^n-(6+sqrt(38))/(2*(37+6*sqrt(38))^n).
a1(n) = (1/(37+6*sqrt(38))^n+(37+6*sqrt(38))^n)/2. (End)