cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A041063 Denominators of continued fraction convergents to sqrt(38).

Original entry on oeis.org

1, 6, 73, 444, 5401, 32850, 399601, 2430456, 29565073, 179820894, 2187415801, 13304315700, 161839204201, 984339540906, 11973913695073, 72827821711344, 885907774231201, 5388274467098550, 65545201379413801, 398659482743581356, 4849458994302390073
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 6, 73, 444]; [n le 4 select I[n] else 74*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 10 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[38], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 21 2011*)
    Denominator[Convergents[Sqrt[38], 30]] (* Vincenzo Librandi, Dec 10 2013 *)
    a0[n_] := ((38+6*Sqrt[38])/(37+6*Sqrt[38])^n+(38-6*Sqrt[38])*(37+6*Sqrt[38])^n)/76 // Simplify
    a1[n_] := (-1/(37+6*Sqrt[38])^n+(37+6*Sqrt[38])^n)/(2*Sqrt[38]) // FullSimplify
    Flatten[MapIndexed[{a0[#],a1[#]}&, Range[20]]] (* Gerry Martens, Jul 11 2015 *)
    LinearRecurrence[{0,74,0,-1},{1,6,73,444},30] (* Harvey P. Dale, Feb 29 2024 *)

Formula

G.f.: -(x^2-6*x-1) / (x^4-74*x^2+1). - Colin Barker, Nov 12 2013
a(n) = 74*a(n-2) - a(n-4). - Vincenzo Librandi, Dec 10 2013
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = ((38+6*sqrt(38))/(37+6*sqrt(38))^n+(38-6*sqrt(38))*(37+6*sqrt(38))^n)/76;
a1(n) = (-1/(37+6*sqrt(38))^n+(37+6*sqrt(38))^n)/(2*sqrt(38)). (End)

Extensions

More terms from Colin Barker, Nov 12 2013
Showing 1-1 of 1 results.