cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041067 Denominators of continued fraction convergents to sqrt(40).

Original entry on oeis.org

1, 3, 37, 114, 1405, 4329, 53353, 164388, 2026009, 6242415, 76934989, 237047382, 2921503573, 9001558101, 110940200785, 341822160456, 4212806126257, 12980240539227, 159975692596981, 492907318330170, 6074863512559021, 18717497856007233, 230684837784645817
Offset: 0

Views

Author

Keywords

Comments

With a(-1) = 0, a(n-1) gives, for n >= 0, the numerator of the convergents to 1/sqrt(40) = 1/(2*sqrt(10)) = A020797. - Wolfdieter Lang, Nov 21 2017

Crossrefs

Cf. A010494, A041066 (numerators).

Programs

  • Magma
    I:=[1, 3, 37, 114]; [n le 4 select I[n] else 38*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 10 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[40],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 21 2011 *)
    Denominator[Convergents[Sqrt[40],30]] (* Harvey P. Dale, Sep 12 2013 *)
    CoefficientList[Series[-(x^2 - 3 x - 1)/((x^2 - 6 x - 1)(x^2 + 6 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 10 2013 *)

Formula

G.f.: -(x^2-3*x-1) / ((x^2-6*x-1)*(x^2+6*x-1)). - Colin Barker, Nov 12 2013
a(n) = 38*a(n-2) - a(n-4). - Vincenzo Librandi, Dec 10 2013

Extensions

More terms from Colin Barker, Nov 12 2013