cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A041075 Denominators of continued fraction convergents to sqrt(44).

Original entry on oeis.org

1, 1, 2, 3, 8, 11, 19, 30, 379, 409, 788, 1197, 3182, 4379, 7561, 11940, 150841, 162781, 313622, 476403, 1266428, 1742831, 3009259, 4752090, 60034339, 64786429, 124820768, 189607197, 504035162, 693642359, 1197677521, 1891319880, 23893516081, 25784835961
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 1, 2, 3, 8, 11, 19, 30, 379, 409, 788, 1197, 3182, 4379, 7561, 11940]; [n le 16 select I[n] else 398*Self(n-8)-Self(n-16): n in [1..40]]; // Vincenzo Librandi, Dec 11 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[44],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 22 2011 *)
    Denominator[Convergents[Sqrt[44], 30]] (* Vincenzo Librandi, Dec 11 2013 *)
    LinearRecurrence[{0,0,0,0,0,0,0,398,0,0,0,0,0,0,0,-1},{1,1,2,3,8,11,19,30,379,409,788,1197,3182,4379,7561,11940},40] (* Harvey P. Dale, Feb 12 2025 *)

Formula

G.f.: -(x^2-x-1)*(x^4+3*x^2+1)*(x^8+10*x^4+1) / ((x^8-20*x^4+1)*(x^8+20*x^4+1)). - Colin Barker, Nov 12 2013
a(n) = 398*a(n-8) - a(n-16). - Vincenzo Librandi, Dec 11 2013

Extensions

More terms from Colin Barker, Nov 12 2013
Showing 1-1 of 1 results.