A041105 Denominators of continued fraction convergents to sqrt(60).
1, 1, 3, 4, 59, 63, 185, 248, 3657, 3905, 11467, 15372, 226675, 242047, 710769, 952816, 14050193, 15003009, 44056211, 59059220, 870885291, 929944511, 2730774313, 3660718824, 53980837849, 57641556673, 169263951195, 226905507868, 3345941061347, 3572846569215
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,62,0,0,0,-1).
Programs
-
Magma
I:=[1, 1, 3, 4, 59, 63, 185, 248]; [n le 8 select I[n] else 62*Self(n-4)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, Dec 11 2013
-
Maple
numtheory:-cfrac(sqrt(60),100,'con','den'): den[1..-2]; # Robert Israel, Jun 09 2015
-
Mathematica
Denominator[Convergents[Sqrt[60], 30]] (* Vincenzo Librandi, Dec 11 2013 *) d0 := LinearRecurrence[{62, -1}, {1, 59}, 20] d1 := LinearRecurrence[{62, -1}, {1, 63}, 20] (* A258684 *) d2 := LinearRecurrence[{62, -1}, {3, 185}, 20] d3 := LinearRecurrence[{62, -1}, {4, 248}, 20] Flatten[MapIndexed[{d0[[#]] , d1[[#]], d2[[#]] , d3[[#]]} &, Range[10]]] (* Gerry Martens, Jun 09 2015 *) LinearRecurrence[{0, 0, 0, 62, 0, 0, 0, -1},{1, 1, 3, 4, 59, 63, 185, 248},30] (* Ray Chandler, Aug 03 2015 *)
Formula
G.f.: -(x^2-x-1)*(x^4+4*x^2+1) / ((x^4-8*x^2+1)*(x^4+8*x^2+1)). - Colin Barker, Nov 12 2013
a(n) = 62*a(n-4) - a(n-8). - Vincenzo Librandi, Dec 11 2013
Extensions
More terms from Colin Barker, Nov 12 2013
Comments