cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041105 Denominators of continued fraction convergents to sqrt(60).

Original entry on oeis.org

1, 1, 3, 4, 59, 63, 185, 248, 3657, 3905, 11467, 15372, 226675, 242047, 710769, 952816, 14050193, 15003009, 44056211, 59059220, 870885291, 929944511, 2730774313, 3660718824, 53980837849, 57641556673, 169263951195, 226905507868, 3345941061347, 3572846569215
Offset: 0

Views

Author

Keywords

Comments

Interspersion of 4 linear recurrences with constant coefficients. - Gerry Martens, Jun 10 2015

Crossrefs

Programs

  • Magma
    I:=[1, 1, 3, 4, 59, 63, 185, 248]; [n le 8 select I[n] else 62*Self(n-4)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, Dec 11 2013
  • Maple
    numtheory:-cfrac(sqrt(60),100,'con','den'):
    den[1..-2]; # Robert Israel, Jun 09 2015
  • Mathematica
    Denominator[Convergents[Sqrt[60], 30]] (* Vincenzo Librandi, Dec 11 2013 *)
    d0 := LinearRecurrence[{62, -1}, {1, 59}, 20]
    d1 := LinearRecurrence[{62, -1}, {1, 63}, 20] (* A258684  *)
    d2 := LinearRecurrence[{62, -1}, {3, 185}, 20]
    d3 := LinearRecurrence[{62, -1}, {4, 248}, 20]
    Flatten[MapIndexed[{d0[[#]] , d1[[#]], d2[[#]] , d3[[#]]} &,
      Range[10]]] (* Gerry Martens, Jun 09 2015 *)
    LinearRecurrence[{0, 0, 0, 62, 0, 0, 0, -1},{1, 1, 3, 4, 59, 63, 185, 248},30] (* Ray Chandler, Aug 03 2015 *)

Formula

G.f.: -(x^2-x-1)*(x^4+4*x^2+1) / ((x^4-8*x^2+1)*(x^4+8*x^2+1)). - Colin Barker, Nov 12 2013
a(n) = 62*a(n-4) - a(n-8). - Vincenzo Librandi, Dec 11 2013

Extensions

More terms from Colin Barker, Nov 12 2013