A041111 Denominators of continued fraction convergents to sqrt(63).
1, 1, 15, 16, 239, 255, 3809, 4064, 60705, 64769, 967471, 1032240, 15418831, 16451071, 245733825, 262184896, 3916322369, 4178507265, 62415424079, 66593931344, 994730462895, 1061324394239, 15853271982241
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Eric W. Weisstein, MathWorld: Lehmer Number
- Index entries for linear recurrences with constant coefficients, signature (0,16,0,-1).
Programs
-
Mathematica
Denominator/@Convergents[Sqrt[63],30] (* Harvey P. Dale, May 18 2011 *) CoefficientList[Series[(1 + x - x^2)/(1 - 16 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 24 2013 *)
Formula
From Colin Barker, Jul 15 2012: (Start)
a(n) = 16*a(n-2) - a(n-4).
G.f.: (1+x-x^2)/(1-16*x^2+x^4). (End)
From Peter Bala, May 28 2014: (Start)
The following remarks assume an offset of 1.
Let alpha = ( sqrt(14) + sqrt(18) )/2 and beta = ( sqrt(14) - sqrt(18) )/2 be the roots of the equation x^2 - sqrt(14)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even. a(n) = Product_{k = 1..floor((n-1)/2)} ( 14 + 4*cos^2(k*Pi/n) ). Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 14*a(2*n) + a(2*n - 1). (End)
Comments