A041121 Denominators of continued fraction convergents to sqrt(69).
1, 3, 10, 13, 62, 75, 287, 936, 15263, 46725, 155438, 202163, 964090, 1166253, 4462849, 14554800, 237339649, 726573747, 2417060890, 3143634637, 14991599438, 18135234075, 69397301663, 226327139064, 3690631526687, 11298221719125, 37585296684062, 48883518403187
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,15550,0,0,0,0,0,0,0,-1).
Programs
-
Magma
I:=[1, 3, 10, 13, 62, 75, 287, 936, 15263, 46725, 155438, 202163, 964090, 1166253, 4462849, 14554800]; [n le 16 select I[n] else 15550*Self(n-8)-Self(n-16): n in [1..40]]; // Vincenzo Librandi, Dec 11 2013
-
Mathematica
Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[69],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Jun 26 2011 *) Denominator[Convergents[Sqrt[69], 30]] (* Vincenzo Librandi, Dec 11 2013 *) LinearRecurrence[{0,0,0,0,0,0,0,15550,0,0,0,0,0,0,0,-1},{1,3,10,13,62,75,287,936,15263,46725,155438,202163,964090,1166253,4462849,14554800},30] (* Harvey P. Dale, Oct 18 2015 *)
Formula
G.f.: -(x^14 -3*x^13 +10*x^12 -13*x^11 +62*x^10 -75*x^9 +287*x^8 -936*x^7 -287*x^6 -75*x^5 -62*x^4 -13*x^3 -10*x^2 -3*x -1) / (x^16 -15550*x^8 +1). - Colin Barker, Nov 13 2013
a(n) = 15550*a(n-8) - a(n-16). - Vincenzo Librandi, Dec 11 2013
Extensions
More terms from Colin Barker, Nov 13 2013