cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041145 Denominators of continued fraction convergents to sqrt(82).

Original entry on oeis.org

1, 18, 325, 5868, 105949, 1912950, 34539049, 623615832, 11259624025, 203296848282, 3670602893101, 66274148924100, 1196605283526901, 21605169252408318, 390089651826876625, 7043218902136187568, 127168029890278252849, 2296067756927144738850, 41456387654578883552149
Offset: 0

Views

Author

Keywords

Comments

For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 18's along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
a(n) equals the number of words of length n on alphabet {0,1,...,18} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, May 03 2023: (Start)
Also called the 18-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 18 kinds of squares available. (End)

Crossrefs

Cf. similar sequences listed in A243399.
Row n=18 of A073133, A172236 and A352361 and column k=18 of A157103.

Programs

  • Magma
    [n le 2 select (18)^(n-1) else 18*Self(n-1)+Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 29 2024
    
  • Mathematica
    Denominator[Convergents[Sqrt[82], 30]] (* Vincenzo Librandi, Dec 11 2013 *)
    Fibonacci[Range[30], 18] (* G. C. Greubel, Sep 29 2024 *)
  • SageMath
    A041145=BinaryRecurrenceSequence(18,1,1,18)
    [A041145(n) for n in range(31)] # G. C. Greubel, Sep 29 2024

Formula

a(n) = Fibonacci(n+1, 18), the n-th Fibonacci polynomial evaluated at x=18. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 21 2008: (Start)
a(n) = 18*a(n-1) + a(n-2) for n > 1; a(0)=1, a(1)=18.
G.f.: 1/(1 - 18*x - x^2). (End)
E.g.f.: exp(9*x)*(cosh(sqrt(82)*x) + 9*sinh(sqrt(82)*x)/sqrt(82)). - Stefano Spezia, Oct 02 2024