A041145 Denominators of continued fraction convergents to sqrt(82).
1, 18, 325, 5868, 105949, 1912950, 34539049, 623615832, 11259624025, 203296848282, 3670602893101, 66274148924100, 1196605283526901, 21605169252408318, 390089651826876625, 7043218902136187568, 127168029890278252849, 2296067756927144738850, 41456387654578883552149
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Tanya Khovanova, Recursive Sequences.
- Index entries for linear recurrences with constant coefficients, signature (18,1).
Crossrefs
Programs
-
Magma
[n le 2 select (18)^(n-1) else 18*Self(n-1)+Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 29 2024
-
Mathematica
Denominator[Convergents[Sqrt[82], 30]] (* Vincenzo Librandi, Dec 11 2013 *) Fibonacci[Range[30], 18] (* G. C. Greubel, Sep 29 2024 *)
-
SageMath
A041145=BinaryRecurrenceSequence(18,1,1,18) [A041145(n) for n in range(31)] # G. C. Greubel, Sep 29 2024
Formula
a(n) = Fibonacci(n+1, 18), the n-th Fibonacci polynomial evaluated at x=18. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 21 2008: (Start)
a(n) = 18*a(n-1) + a(n-2) for n > 1; a(0)=1, a(1)=18.
G.f.: 1/(1 - 18*x - x^2). (End)
E.g.f.: exp(9*x)*(cosh(sqrt(82)*x) + 9*sinh(sqrt(82)*x)/sqrt(82)). - Stefano Spezia, Oct 02 2024
Comments