A041174 Numerators of continued fraction convergents to sqrt(97).
9, 10, 59, 69, 128, 197, 325, 522, 847, 4757, 5604, 105629, 111233, 661794, 773027, 1434821, 2207848, 3642669, 5850517, 9493186, 53316447, 62809633, 1183889841, 1246699474, 7417387211, 8664086685, 16081473896, 24745560581, 40827034477, 65572595058
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,11208,0,0,0,0,0,0,0,0,0,0,1).
Programs
-
Mathematica
Numerator[Convergents[Sqrt[97], 30]] (* Vincenzo Librandi, Oct 30 2013 *) LinearRecurrence[{0,0,0,0,0,0,0,0,0,0,11208,0,0,0,0,0,0,0,0,0,0,1},{9,10,59,69,128,197,325,522,847,4757,5604,105629,111233,661794,773027,1434821,2207848,3642669,5850517,9493186,53316447,62809633},30] (* Harvey P. Dale, Aug 02 2021 *)
Formula
G.f.: -(x^21 -9*x^20 +10*x^19 -59*x^18 +69*x^17 -128*x^16 +197*x^15 -325*x^14 +522*x^13 -847*x^12 +4757*x^11 +5604*x^10 +4757*x^9 +847*x^8 +522*x^7 +325*x^6 +197*x^5 +128*x^4 +69*x^3 +59*x^2 +10*x +9) / (x^22 +11208*x^11 -1). - Colin Barker, Nov 14 2013
Extensions
More terms from Colin Barker, Nov 14 2013